Open Sound System™

Programmer's Guide

Version 1.0

<FEront

Technologies

Copyright © 1999-2000, 4Front Technologies
Linux is aregistered trademark of Linus Torvalds.
All other trademarks and copyrights referred to are the property of their respective owners.

Revision 1.0 January 5, 2000
Written by Jeff Tranter

4Front Technologies

4035 L afayette Place, Unit F
Culver City, CA 90232

USA

Telephone: (310) 202-8530

Fax: (310) 202-0496

E-mail: info@opensound.com
WWW: http://www.opensound.com

While every precaution has been taken in the preparation of this manual, 4Front Technologies
assumes no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Table of Contents

Table of CoNteNtS o 3
INErOTUCTION . . oo e e e e e 8
Background 8
OSS AP BaSICS . . ittt ettt e 9
DeviceFilesSupported by OSS 9
(OB MIXEr 10
fdevisndstat 10
/devidspand/deviaudio e 10

JABV SEUENCEr . .o 11
/devimusic (formerly /devisequencer2)cc i 11
ldevimidi ... 11

eV dmim 12
fdevidmmidi 12
Device NUMDENiNgG oo 12
Programming GUIdEINESo e 13
USEAPI MACIOS . . . oo e e e 13

Device Numberingand Naming 13

Endian Convention it 14

Don't Use Undefined Default Conditions, 14

Don't Try to Openthe SameDevice TWICe 14

Avoid ExtraFeaturesand Tricks 15

Don't UseUndocumented Featuresoiiiiinnennnnnn. 15

Avoid Invalid ASSUMPLIONSot 15

YD P 15
[devidspand/deviaudio 16
/devisequencerand /devimusIiCt e 16

MiIXEr Programimingottt e et e e e e e e e e e e 17
INEFOTUCTION . . oo e e e e 17
Typesof MiXer Programsttt e 18
Mixer Channelso 18
Querying the Capabilitiesof theMixer i 20
Usingthe Mixer Query Interface i i 20
Checking Available Mixer Channels. i 20
Checking Available Recording DeviCes, 21
Checking if aDeviceiSMONO Or StEre0o v it e 21
Checking General Capabilitiesof aMixer 21
Naming of Mixer Channels i e 21
Meaning of VolumeLevels 21

Gettingand Setting Volumes i e 22

Selecting the Recording SOUICES oot it 22

AUdio Programmingottt 24
INtrOdUCTION . . . o 24
Genera Programming GUIdElines e 25
Simple Audio Programmingttt e 27
Declarationsfor an Audio Program e 27
Selecting and Openingthe Sound Device i 28

A Simple Recording Applicationttt i 29
Simple Playback Application 29
Setting Sampling Parameterst 30
Selecting Audio Format 30
Selecting the Number of Channels (Mono/Stereo)t 33
Selecting SamplingRate (speed) 33

Other Commonly Usedioctl Calls. ... e 34
Interpreting AudoData e 35
Mu-law (LogarithmicEncoding) 36
8-bitunsigned 36

16-bit SIgnedo e 36

Encoding of SteredData 37
CONCIUSIONS ..ot 37

MIDI Programmingottt et e et e e e e 38
What ISMIDI 2 o 38

Low level MIDI Programmingttt e e e 39
INErOTUCTION . . oo e e e e e e 39
Changing Parameters e 40

Raw MUSIC INterface e e 41
Background 41
1AevidMEmMO .. 41
dev/dmmidiO 41
Applications That Usethe Raw MusicInterface 41

FM Synthesizer Interface e e 42
INtroduction 42
DalaStrUCIUIESo 42

FM Voice DalaSIructureo e i e 43

FM NoteDataStructureo e 45

FM Parameter DataStructure e 46

FM Synthesizerioctl FUNCtions e 47

FM _IOCTL _RESET .. i e e e 47
FM_IOCTL_SET MODE e e 47

FM_IOCTL_SET VOICE . . . e e et e e e 47

FM _IOCTL _PLAY NOTE ...t e 48
FM_IOCTL_SET PARAMS e e 48

FM _IOCTL_SET OPL ..ttt e e 48
Programming the FM Synthesizer 48
Additional Noteson FM Programming 50
Programming The FM Synthesizer Using SBI Files 52
FM Synthesizer in4-Operator Modet e e 55
MIDI INterfaceo e 56
INErOdUCEIONo e 56

MIDI Note Specificationiuiiii e 58
Reading From MIDI INStruments.t e e 59
Reading From MIDI FilesUsingMidilib 60

MUSIC PrOgramImMing oottt e e e et e e e 68
INtrOdUCEION . .. o 68
Midi And Music Programming Interfaces Provided By OSS 68
FundamentalS Of /OBV/MUSICottt 68
QuelES aNd EVENISot 69
MIDI Portsand Synthesizer DeviCes e e e 70
MIDI POIS . . o 70
Internal Synthesizers 71
Differences Between Internal Synthesizer and MIDI Port Devices. 72
Instrumentsand Patch Caching 73

NO S . . 74
Voicesand Channdsot 74
Controlling Other Parameters 75
Programming /dev/imusic and /dev/sequencer i 75
INitial SIS . .ot 75
Openingthe DeVICE i 77
WHEING BEVENtS . . .o 78
The Minimal /dev/midi Program 78
The Virtual MiXer ... e e e 81
SO OGS .. .o 83
INtrOdUCTION . .. o 83
Technical Background i e 83
Applications of SoftOSS Technology 84
SYStEM REQUITEMENIS oottt e e 84
Limitations of SOftOSS 85
Getting SOftOSS o e 85
GettingtheSound Patches 85
Configuring SOftOSSo 86

FUIUrE Planso e 86

Advanced Programming TOPICS . ..o vttt ettt e e ettt 88
INtrOdUCEION . . . oo 88
AUdio INtErNalS. 88
Normal Operation When WritingtotheDevice 89
Normal Operation When Reading fromtheDevice............ 90
Buffering - Improving Real-Time Performance 91
Determining Buffering Parameters 91
Selecting Buffering Parameters e 92
Obtaining Buffering Information (POINters)ouuiiiiinnennennn. 93
Non-BlockingReadsand Writes e 94
USING SElECt . ..o 94
Checking Device Capahilities e e 95
SYNChroNIZatioN ISSUES oot e e 95
Avoiding Blocking in Audio Operationsovuii i 96
Synchronizing External EventsWithAudio 96
Synchronizing Audo With External Events 96
Synchronizing Recording and Playback Together 97
Implementing Real-Time Effect Processors and other Oddities 97
Starting Audio Playback and/or Recording with Precise Timing 98
Starting Audio Recarding or Playback in Sync with /dev/sequencer or /dev/imusic 99
FUull Duplex Mode e e e 99
Accessingthe DMA Buffer Directly 100
Platform SpeCifiC ISSUESot 102
ApPendixX A - REFEIENCESo 103
http://WWW.0PENSOUNA.COMot et et et 103
http://WWW.IINUXAOC.OMGo e 103
http://sound.CONdOrOW.NEL o e et 103
http://www.freshmeat.net e 103
Appendix B - General MIDI patChmapt e 104
Appendix C- FM Synthesizer Interface i 107
GloSSaArY Of TeIMIS ..ot e 109
INAEX . 113

| ntroduction

This manual describesthe Open Sound System (OSS) application programming interface. It starts
with general background information on OSS devicesand programming techniques. It then getsinto
adetailed description of programming the mixer, audio, MIDI, raw music andthe new Virtual Mixer
and SoftOSS devices. Also covered are some advanced programming topics and platform specific
issues. The manual finishes up with references to further information and a glossary of technical
terms used in the manual.

It is assumed that the reader has OSS installed and working and has a basic familiarity with C
programming on the platform on which OSS is being used.

OSSiscontinuously unde devel opment, with new featuresbeing constantly added. Thismanual is
awork in progress that attempts to document these features. You should periodically check the
4Front Technol ogiesweb siteto obtain thelaest version of themanual . We al sowel comecomments
or corrections to the manual — please send them by e-mail tosupport @pensound. com

Additional late-breaking information can be found in the Readne and other files that come with
your copy of the OSS software. For issues related to installing OSS, see the Open Sound System
Installation Guide.

Background

The Open Sound System (OSS) is a device driver for sound cards and other sound devices under
various UNIX and UNIX-compatible operating systems. OSS was derived from the sound driver
written for the Linux operating system kernel. The current version now runs on more than a dozen
operating system platforms and supportsmost popular sound cards and sound devicesintegrated on
computer motherboards.

Sound cards normally have severa different devices or ports which produce or record sound. There
are differences between various cards, but most have the devices described in this section.

Thedigitized voice device (also referred to asa codec, PCM, DSP or ADC/DAC device) isused for
recording and playback of digitized sound.

The mixer deviceis used to control variousinput and output volume levels. The mixer device also
handles switching of the input sources from microphone, line-level input and CD input.

The synthesizer deviceisused mainly for playing music. It is also used to generate sound effectsin
games. The OSSdriver currently supportstwo kinds of synthesizer devices. ThefirstistheY amaha
FM synthesizer chip which isavailable on most sound cards. There are two models of thisFM chip.
The Yamaha OPL-2 is a two operator version which was used in early sound cards such as the
AdLib and SoundBlaster 1 and 2. It has just 9 simultaneous voicesand is not capable of producing

8

very realistic instrument sounds. The OPL-3 isan improved version that supports 4 operator voices
which offer the ability to produce more realistic sounds. The second type of synthesizer devicesare
the so-called wave table synthesizers. These devices produce sound by playing back pre-recorded
instrument samples. This method makes it possible to produce extremely realistic instrument
timbres. The Gravis UltraSound (GF1) is an example of awave table synthesizer.

A MIDI interfaceisaused to communicate with devices, such as synthesi zers, that use the industry
standard MIDI protocol. MIDI uses aserial interface running at 31.5 kbps which is similar to (but
not compatiblewith) standard PC serial ports. The MIDI interfaceisdesignedtowork with on-stage
equipment like synthesizers, keyboards, stage props, and lighting controllers. MIDI devices
communicate by sending messages through aMIDI cable.

M ost sound cardsalso provideajoystick port and somekind of interface (IDE, SCSI, or proprietary)
for a CD-ROM drive. These devices are not controlled by OSS but there are typically separate
drivers available.

OSS API Basics

The application programming interface(API) of the OSSdriver is defined inthe C language header
file<soundcar d. h>.

The OSS software shipswith acopy of theheader fileinthei ncl ude/ sys subdirectory. Y oumay
have older versions of the include file that are included with your operating system (Linux
distributions typically include the older OSS/Free driver, for example). It usually causes no harm
to use the older header file but you will not be able to usesome of the newer features only provided
in OSS. Very old versions may also cause compatibility problems. To avoid this, you can either
point to the OSS header files when compiling applications (eg. use the compile option
"-1/usr/1ib/oss/include")orinstall theheader fileinastandard system header filelocation
(e.g./usr/include/sys).

If you get compile errors when building an application, verify that you are using the version of
<soundcar d. h> supplied with OSS.

Device Files Supported by OSS

The OSS driver supports several different types of devices. These are described in the following
sections.

1There is another include file for the Gravis U ItraSound card, <ul t r asound. h>, but normally it should
not be required. It is not actually part of the OSS API, but a hardware specific extension to it.

[/ dev/ m xer

Themixer devicefilesare used primarily for accessing thebuilt-in mixer cirauits of sound cards. A
mixer makes it possible to adjust playback and recording levels of various sound sources. This
devicefileis aso used for selecting recording sources. Typicdly a mixer will control the output
levelsof thedigital audio and FM synthesizer and also mix it with the CD input, linelevel input and
microphone input sources.

The OSS driver supports several mixers on the same system. The mixer devices are hamed
/ dev/ m xer 0,/ dev/ m xer 1, etc. Thedevicefile/ dev/ m xer isasymboalic link to one of
these device files (usually the first mixer, / dev/ m xer 0).

/ dev/ sndst at

This device file is provided for diagnostic purposes, and unlike dl of the other sound devices,
produces its output in human readable format. The device prints out information about all of the
portsand devicesdetected by the OSSdriver. Runningthecommand” cat / dev/ sndst at " will
display useful information about the driver configuration. It should be noted tha the output of
/ dev/ sndst at isnot intended to be machine readable and may change without notice in future
versions of OSS.

/ dev/ dsp and /dev/audio

These are the main device files for digitized voice applications. Any datawritten to this deviceis
played back with the DAC/PCM/DSP device of the sound card. Reading thedevicereturnsthe audio
data recorded from the current input source (the default is the microphone input).

The/dev/ audi oand/ dev/ dsp devicefilesarevery similar. Thedifferenceisthat/dev/ audi o
useslogarithmic mu-law encoding by default while/ dev/ dsp uses8-bit unsigned linear encoding.
With mu-law encoding a sample recorded with 12 or 16-bit resolution is represented by one 8-bit
byte. Note that the initid sample format is the only difference between these device files. Both
devicesbehave similarly dter aprogram sel ectsa specific sample encoding by callingi oct | . The
/dev/ audi o device is provided for compatibility with the sound device provided on Sun
workstations running SunOS. These device files can be used for applications such as speech
synthesis and recognition and voice mail.

Although / dev/ audi o provides minima compatibility with Sun’s AP, there is no support for
Sun'sioctl () interface. OSS under Solaris emulates these calls to some degree to provide
compatibility with existing Solarisand SunOS applications, however thisemulaionisnot officially
supported by 4Front Technologies.

The OSS driver supports several codec devices on the same system. The audio devices are named

/ dev/ dsp0,/ dev/ dspl,etc. Thefile/ dev/ dsp isasymboliclink to oneof thesedevicefiles
(usually / dev/ dsp0). A similar naming schemeisused for /dev/ audi o devices.

10

/dev/sequencer

Thisdevicefileisintended for el ectronic music applications. It can also be used for producing sound
effectsin games. The /dev/sequencer device provides access to any internal synthesizer devices of
the sound cards. In addition, thisdevicefile can beused for accessing any external music synthesizer
devices connected to the MIDI port of the sound card as well as General MIDI daughtercards
connected to the WaveBl aster connector of many sound cards. The/dev/sequencer interfacepermits
control of up to 15 synthesizer chips and up to 16 MIDI ports at the same time.

[dev/ nmusi c (formerly /dev/sequencer 2)

Thisdevicefileisvery similarto/ dev/ sequencer . Thedifferenceisthat thisinterface handles
both synthesizer and MIDI devicesinthesameway. Thismakesit easier to writedeviceindependent
applicationsthanitiswith/ dev/ sequencer . Ontheother hand,/ dev/ sequencer permits
more precise control of individual notesthan/ dev/ nusi ¢, which isbased on MIDI channels.

CAUTION
Unlike the other device files supported by OSS, both / dev/ sequencer and/ dev/ nusi c

accept formatted input. It is not possible, for example, to play music by just sending MIDI filesto
them.

[dev/ m di

These are low level intafaces to MIDI bus ports that work much like TTY (character teeminal)
devices in raw mode. The device files are not intended for real-time use — there is no timing
capability so everything written to the devicefile will be sent to the MIDI port immediately. These
devices are suitable for use by gpplications such as MIDI SysEx and sample librarians.

There device files are named / dev/ m di 00, / dev/ m di 01, etc. (note the two digit device

numbering). Thedevice/ dev/ m di isasymbolic link to one of the actual devicefiles (typically
/ dev/ mi di 00).

TIP
Many of the sound device files are numbered from 0O to n. It is possible to find out the proper,
number by using thecommand"cat/ dev/ sndst at ". Theoutput produced containsasectionfor
each device category. Devices in each category are numbered, with the number corresponding to
the number in the devicefile name. The numbering of devicesdepends on the order that the deviced
have been initialized during startup of the driver. This order is not fixed, so don't make any|
assumptions about device numbers.

11

/dev/dmfm

Thisis araw interface to FM synthesizers. It provides low level register access to the FM sound
chip. Devices are named /dev/dmfmO, /dev/dmfmL, etc.

/[dev/dmmidi

Thisisthe raw interface to MIDI devices. It provides direct TTY -like access to the MIDI bus for
specialized applications. Devices are named /dev/dmmidiO, /dev/dmmidil, etc.

Device Numbering

The OSS devicefiles share the same major device number. Onethe Linux platform themajor device
number is 14; on other operating systemsit isusually something else. The minor number assignment
isgivenintable 1 below.

Thefour least significant bitsof the minor number are used to select thedevicetypeor dass. If there
is more than one device in a class the upper 4 bits are used to select the device. For example, the
classnumber of / dev/ dsp is3. The minor number of thefirst device, / dev/ dsp0, is3 and for
the second device, / dev/ dspl,is19 (16 + 3).

Table 1 - OSS Device Numbers (Linux platform)

M ajor Minor Name

14 0 /dev/mixer0 .. /dev/mixer4

14 1 /dev/sequencer

14 2 /dev/midiO0 .. /dev/midi04

14 3 /dev/dspO .. /dev/dspl5

14 4 /dev/audioO .. /dev/audiol5

14 5 /dev/dspWO .. /dev/dspW15

14 6 /dev/sndgat

14 7 /dev/dmfmO

14 8 /dev/music
/dev/audio (link to /dev/audio0)
/dev/audioctl (link to /dev/mixer0)
/dev/dmdsp0 (link to /dev/d9)
/dev/dmmidiO (link to /dev/midi)

12

/dev/dsp (link to/dev/dsp0)

/dev/dspW (link to /dev/dspWO0)

/dev/dspdefault (link to /dev/dsp0)

/dev/midi (link to /dev/midiQ0)

/dev/mixer (link to /dev/mixer0)

/dev/sequencer?2 (link to /dev/music)

mixer (link to /dev/mixer0)

Programming Guidelines

Oneof themaingoalsofthe OSSAPI isfull source code portability of applications between systems
supporting OSS. Thisispossibleif certain guidelinesarefollowed when designing and programming
the audio portion of an goplication. It is even more important that the rest of your application is
writtenin aportable manner. In practice most portability problemsin the current sound applications
writtenfor Linux areinthe program modul esthat perform screen handling. Soundrel ated portability
problems are usudly just endian probems.

Theterm portability doesn't just refer to the program's ability to work on different machinesrunning
different operating systems It alsoincludesthe ability to work with different sound hardware. This
iseven more important than operating system portability since differences between the current and
future sound devices are likely to be relatively large. OSS makes it possible to write applications
which work with all possible sound devices by hiding device specific features behind the API. The
API is based on universal physical properties of sound and music raher than hardware specific
properties.

This section lists a number of areas to wach for that will hdp improve the likelihood that OSS
applications are portable.

Use APl Macros

The macros defined in <soundcar d. h> provide good portability since possible future changes
to the driver'sinternals will be handled transparently by the macros. It is possible, for example, to
use the / dev/ sequencer device by formatting the event messages in the application itself.
However it is not guaranteed that this kind of application worksinall systems. Y ou should use the
macros provided for this purpose in the sound header file.

Device Numberingand Naming

13

In some cases there might be several sound devices in the same system (e.g. a sound card and
on-board audio). In such cases the user may have valid reasons for using different devices with
different applications. Thisisnot amajor problem with open source applications wherethe user has
the freedom to change device names in source code. However, the situation is different when the
source code for the program is not available. In either caseit is preferable that the user can specify
the devices in the application's preferences or configuration file. The same is true with MIDI and
synthesizer numbersusedin/ dev/ sequencer and/ dev/ nusi c¢. Design your application 0
that it is possible to select the device numbers. In particular, don't hard code your program with
device nameswhich haveanumeric suffix. For example, it ispreferableto program your application
touse/ dev/ dsp andnot/ dev/ dsp0.While/ dev/ dsp isusually asymboliclink which points
to/ dev/ dspO, the user may have reasons to change audio applicationsto use/ dev/ dsp1l by
changing the link. In this case an application that uses/ dev/ dsp0 directly will usethe incorrect
device.

Endian Convention

Thisisaserious problem with applications using 16-bit audio sampling resolution. Most PC sound
cards use little-endian encoding of samples. This means that there are no problems with audio
applications on little-endian machines such as Intel x86 and AlphaAXP. In these environments it
is possible to represent 16-bit samples as 16-hit integers (signed short). Thisis aso not a problem
in big-endian machines which have built-in big-endian codec devices. However, the endian
convention is a big problem in mixed endian systems. For example, many RISC systems use
big-endian encoding but it is possible to uselittle-endian | SA or PCI sound cardswith them. Inthis
case, using 16-bit integers (signed short) directly will produce just white noise with afaint audio
signal mixed in with it. This problem can be solved if the application properly takes care of the
endian convention using standard portability techniques.

Don't Use Undefined Default Conditions

For most parameters accepted by the OSS driver there is a defined default value. These defined
default values are listed in this manual at the point where the specific features are discussed.
However, in some cases the default condition isnot fixed but depends on characteistics of the
machine and the operating system where the program runs. For example, the timer rate of
/ dev/ sequencer isfixed and depends on the system timer frequency parameter (HZ). Usually
the timer frequency is 100 Hz which gives a timer resolution of 0.01 seconds. However there are
systems where the timer frequency is 60 or 1024 Hz. Many programs assume that the tick interval
is always 0.01 seconds and will not work on these systems. The proper way to handle this kind of
variable condition is to use the method defined for querying the default value.

Don't Try to Open the Same Device Twice
Most device files supported by the OSS driver have been designed to be used exclusively by one
application process (/ dev/ mi xer isthe only exception). It is not possible to re-open a device

while the same device is aready open by another process. Don't try to overcome this situation by

14

usingf or k?or other tricks. Thismay work in somesituations, but in general the result isundefined.
Avoid Extra Featuresand Tricks

Think carefully before adding a new feature to your application. A common problem in many
programsis that there are lot of unnecessary features® which are untested and just cause problems
when used. A common example of an extra feature is including a mixer interface in an audio
playback application. Itisvery likely that the featurewill be poorly implemented and cause troubles
on some systems which are different from the author's. In this case a separate mixer application is
probably a more flexible and reliabl e tested solution.

Don't Use Undocumented Features

There are features that are defined in <soundcar d. h> but which are nat documented here This
features are left undocumented for areason. Usually they are obsol ete features which are no longer
supported and will disappear in futuredriver versions. Some of them arefeatureswhich have not yet
been fully tested and may cause problems on some systems. A third possibility is there are
undocumented featureswhich aredevice dependent and work with only few devices(whichareoften
obsolete). Therefore, avoid the temptation of using features just because they were found when
browsing <soundcar d. h>.

Avoid Invalid Assumptions

There are many common assumptions which make programs non-portable or highly hardware
dependent. The following isalist of things that are commonly misunderstood.

Mixer

Not all sound cards have amixer. Thisis true with some older sound cards, some sound cards that
are not yet fully supported by the OSS driver, and some high end professional ("digital only")
devices which are usually connected to an extemal mixer. Y our program will not work with these
cardsif it requires the availability of a mixer.

Not all mixers have amain volume control. For some reason almost all mixer programswritten for
the OSS APl make this assumption.

The set of available mixer controlsisnot fixed, but varies between devices. Y our application should
guery the available channels from the driver before attempting to use them (alternatively the

2 ysi ng f or k is acceptableif only one process actually uses the device. The same s true for multi-

threaded programs.
3 Thisis a general problem, not one that just applies to sound applications. One of the original design
tenets of UN X was that each program should do exactly one thing well.

15

application can just selectivdy ignore someerror codesreturned by the mixer API butthisisareally
crude and semantically incorrect method).

Try to avoid automaticuse of the main volume mixer control. This control affectsthevolume of all
audio sources connected to the mixer. Don't useit for controlling the volume of audio playback since
it also affects the volume of an audio CD that may be playing in the background. Y our program
should use only the PCM channel to control the volume of audio playback.

/ dev/ dsp and / dev/ audi o

Thedefault audiodataformat is8 kHz/8-bit unsigned/mono (/ dev/ dsp) or 8 kHz/mu-Law/mono
(/ dev/ audi 0). However, thisis not aways true. Some devices simply don't support the 8 kHz
sampling rate, mono mode or 8-bit/mu-Law data formats. An application which assumes these
defaultswill produce unexpected results(such as 144 dB noise) with some hardware (such asfuture
24-bit only sound hardware).

/ dev/ sequencer and/ dev/ nusi c

As mentioned earlier, don't assume that the timer rate of / dev/ sequencer is 100 Hz (0.01
second). Thisis not true on al platforms— Linux on Alpha uses a much higher system clock rate,
for example.

Set all of the timing parameters of / dev/ musi ¢ before using the device. There are no globally
valid default values.

Don't assume that there is always at least one MIDI port and/or one synthesizer device. There are
sound cards which have just a syntheszer or just aMIDI port.

Don't try to use aMIDI port or syntheszer device before first checking that it exists.

16

Mixer Programming

I ntroduction

Most sound cards have some kind of mixer which can be used for controlling volume levels. The
OSS API definesadevicefile,/ dev/ mi xer , which can be used to access the mixer functions of
the card. It ispossiblethat there is more than one mixer if there are several sound cardsinstalled on
the system. The actud mixer device files are / dev/ m xer O, / dev/ m xer 1, etc. with
/ dev/ m xer beingjust asymbolic link to one of these devicefiles(usualy/ dev/ m xer 0, but
the user has the freedom to assign the link differently).

NOTE
It is possible that no mixers are present on the system. Some sound cards simply don't have any
mixer functionality. Thisis common with some old sound cards. There are also some high end
professional sound cards that don't have a mixer. Don't assume that there isamixer in every
system. All systems have/ dev/ m xer O but thei oct | calswill fail andseterr no to
ENXI Oif no mixer is present. Y our program should be prepared to handle ENXI Oreturned by
any of thei oct | cals.

The OSS mixer API isbased on channels. A mixer channel isanumbered object which represents
aphysical control or slider of the mixer. Each of thechannelshave independently adjustable values
which may vary between 0 (off) and 100 (maximum volume). Most of the channels are stereo
controls, so it is possible to set valuesfor both stereo channels separately which permitsthe control
of balance. The mixer API containsafewi oct | callsfor setting and getting the vadues of these
mixer channels.

In addition to volumes, the mixer API aso controlsthe selection of recording sources. With most
sound cardsit is possible to record simultaneously only from one source, while afew cards (such
asthe PAS16) allow several recording sourcesto be active at the sametime. After asystem reset the
microphone input is usually selected as the recording source (but there is no guarantee that thisis
awaystrue).

NOTE
Changesto the mixer settingswill remain active until the systemisrebooted or changed again. The
driver doesn't change the mixer settings unless instruded to do so by commands.

Thethird class of mixeri oct | callsarefunctionsused for querying the capabilities of the mixer.
With these callsit is possible to check which mixer channels are actually present and which can be
used as input sources.

17

NOTE
The set of available mixer channelsis not fixed since different sound cards have different
mixers. For this reason it is important to check which channels are available before attempting
to use the mixer. It is possible that even the main volume setting is missing. The driver will
return -1 and seter r no to the error code EI NVAL if a nonexistent mixer channel is assigned.

Mixer channels are bound to pins of the mixer chip. Some mixer chips are used in cards made by
several manufacturers. It is possible that some manufacturers have connected the mixer chip in a
different way than the others. In this case some mixer channels may have a different meaning than
defined below.

It is recommended that mixer functionality is not embedded in programs whose main function is
something el se (for example, audio). In somesound cards the hardware level mixer implementation
may differ significantly fromthe normal situation. Inthiscase, only amixer programtailored for that
card works properly. Adding mixer functionality to programs may cause unexpected support
problemsin future.

Types of Mixer Programs

The mixer APl of OSS permits writing of generic mixer programs which work with almost any
sound card. Thisis possible only if the program uses the query functions of the API to check the
capabilities of the device before trying to useit.

Itisalso possible to design amixer so that it warks best with a particular sound card. In thisway it
iseasier to design a nicelooking GUI which matches the hardware properly. Eveninthiscaseitis
agood ideatocheck that the required mixer channelsare actudly present by usingthequery i oct |
functions defined below. In this case you should clearly indicate in the documentation for the
program that it requires a particular sound card.

Mixer Channels

The mixer channels have an unique number between 0 and 30. Thefile<soundcar d. h> defines
some mnemonic names for the channels. Note that these are the current ones, new ones could be
added in the future.

Themacro SOUND_M XER _NRDEVI CES givesthe number of channels known whenthisversion
of <soundcar d. h>waswritten. A program should not try to accesschannel sgreater or equal than

SOUND_M XER NRDEVI CES.

The channels currently known by the driver are shown in table 2.

18

Table2 - Mixer Channds

Macro Description

SOUND_M XER_VOLUME Master output level (headphonelline out volume)

SOUND_M XER_TREBLE Treble level of all of the output channels

SOUND_M XER_BASS Bass level of all of the output channels

SOUND_M XER_SYNTH Volume of the synthesizer input (FM, wavetable). In some cases may be

connected to other inputs too.

SOUND_M XER_PCM Output level for the audio (Codec, PCM, ADC) device (/ dev/ dsp and
/ dev/ audi 0)

SOUND_M XER_SPEAKER Output volume for the PC speaker signals. Works only if the speaker
output is connected directly to the sound card. D oesn't affect the built in
speaker, just the signal which goes through the sound card. On some sound
cards thisis actually a generic mono input which may control some other
function. For example, in the GUS Max this control adjuststhe volume of
the microp hone signal routed to line out.

SOUND_M XER_LI NE Volume level for the line injack

SOUND_M XER_LI NE1 Generic mixer channels which are used in cases when the precise meaning
gamg—m igg—t: mgg of a physical mixer channel is not known. The actual meaning of these

- - signals is vendor defined. Usually these channels are connected to the
synth, line-in and CD inputs of the card but the order of the assignment is
not known to the driver.

SOUND_M XER_M C Volume for the signal coming from the microphone jack. In some cases
his signal controls only the recording volume from the microphone and on
some cards it controls the volume of the microphone signal routed to the
output of the card too. In some cards the microphone is not connected to
the true microphone input at all but to one of the linelevel inputs of the

mixer chip.
SOUND_M XER_CD Volume level for the input signal connected to the CD audio input.
SOUND_M XER_I' M X A recording monitor channel on the PAS16 and some other cards. It

controls the output (headphone jack) volume of the selected recording
sources while recording. This channel only has effect when recording.

SOUND_M XER_ALTPCM Volume of the alternate codec device (such as the SoundBlaster emulation
of the PAS16 cards).

SOUND_M XER_RECLEV Global recording level setting. In the SoundBlaster16 card thiscontrols the
input gain, which has just 4 possible levels.

It isimportant to remember that the exact effect of mixer channels may be dlightly different insome
sound cards. For this reason, try to avoid too specific descriptions of the mixer channels in
documentation of amixer program.

19

Querying the Capabilities of the Mixer

The mixer interface of OSS has been designed so that it is possible to compile amixer program on
one system and to use it on another system with different sound hardware. Thisis possible only if
the mixer program follows some guidelines. It has to query for the hardware configuration before
taking any other actions with the mixer interface. It does no harm if the program triesto change the
volume of a channel without first querying if the channel isvalid, sincethei oct | call will return
an error if there is something wrong with the request. However, if a mixer program shows mixer
channelsthat are not valid for the sound hardware, the user may become confused. Thei oct | calls
described in the next section give programs a way to determine the correct sound hardware
capabilities.

Using the Mixer Query Interface
All query functions of the mixer API return abit mask in an integer variable which is passed as an
argument tothei oct | call. The following code fragment shows the generic method used for the

calls described in the following sedions.

Listing 1 - Checking for Device Capabilities

int mask;

if (i oct| (mixer_fd, SOUND_MIXER_READ_xxxx, & mask) == -1) {
/* Mixer capability is notavailable - handle this gracefully ... */

}

It is important to note that any i oct | call for the mixer APl may return -1 and set theer r no
variableto ENXI Oif no mixer at al is present (it isalways possibleto open/ dev/ m xer 0, even
when no mixer is available). The meaning of the bits of the mask are defined in later sections.
Testing the bit corresponding to a mixer channel can be done using the expression"mask & (1
<< channel _no)".Thechannel _no parameter may be one of the SOUND M XER macros
defined earlier or an integer value between 0 and SOUND_M XER_NRDEVI CES. The latter
alternative is useful for writing a mixer that dynamically adapts to the capabilities of any card.

Checking Available Mixer Channels

Thei oct | SOUND_M XER_READ_ DEVMASK returnsabit mask in the variable pointed to by the
argument (mask in the previous example). To see if a particular mixer channel is supported you
need to test if the bit corresponding to the channel number is set. Any attempt to access undefined
mixer channels using channel specifici oct | calls will return an error (er r no will be set to
El NVAL).

20

Checking Available Recording Devices

Thei oct| SOUND_M XER_READ RECMASK returnsabit mask where each bit representsamixer
channel. The channels having thar corresponding bit set may be used as a recording channel.

Checking if a DeviceisMono or Stereo

Most mixer devices have stereo capability, making it possible to independently set the volumesfor
both the left and right stereo channels of the mixer channel. However, some devices are mono only
and in this case just the left channel volume is used. The ioctl «call
SOUND M XER READ STEREODEVS returns a bit mask where a 1 indicates that the
corresponding channel supportsstereo. A mixer program should use thisinformation to decideif it
should draw dlidersfor both stereo channels or not. Otherwise, having astereo control displayed for
amono channel may confuse the user of the application.

Checking General Capabilities of a Mixer

The i oct| call SOUND_M XER_READ_CAPS returns a bit mask which describes general
capabilitiesof themixer. These capabilitiesare not rel atedto any particularmixer channel. Curently
just one mixer capability is defined. The bit SOUND_CAP_EXCL | NPUT isset to 1 if only one
mixer channel can be selected as arecording sourceat any onetime. If the bit isO thenitispossible
to have several recording devices selected at the same time. In practice, checking this bit is not
crucial since thei oct | call used for selecting the recording channel handles the two different
modes of operation.

Naming of M ixer Channels

Thefile<soundcar d. h>definestwo setsof printablenamesfor the mixer channels. Thesenames
should be used when labelling or naming the mixer channels in application programs. The macro
SOUND_DEVICE_LABELScontainsalist of printable strings which can be used, for example, to
label the sliders for the channels. Y ou could access the names by defining a variable &s:

const char *| abel s[] = SOUND_DEVI CE_LABELS;

For example, | abel s| SOUND_M XER _VOLUME] containsatextual label ("Vol") for themain
volume channel.

Themacro SOUND_DEVI CE_NAMES issimilar but it contains names to be used for features such
as parsing command options. The names in this macro don't contain blanks or upper case lettes.

Meaning of Volume Levels
The OSS driver specifies volume levels using integer values from 0 to 100. The value O means

21

minimum volume (off) and 100 means maximum volume.

Most mixers have anywherefrom 3 to 8 bits of accuracy for controlling the volume at the hardware
level. The OSS driver scdes between the local (0-100) and hardware defined volume. Sincethis
scalingisnot exact, the application should be careful when using the volumereturned by thei oct |
calls. If the application writes the volume and then reads it badk, the returned volume is usually
dlightly different (smaller) than the requested one. If the write-read sequenceis repeated several
times, the volume level dlides to zero even if the application makes no changes itself. It is
recommended, therefore, that the application reads the volumejust during initialization and ignores
the volume returned later.

Getting and Setting Volumes

An application program can read and/or write the volume setting of a mixer device by calling the
i oct | functionsSOUND M XER _READand SOUND M XER VARl TE. Themixer channel isgiven
as an argument to the macro. The channel number may be one of the channel identifiers definedin
<soundcar d. h>or aninteger between 0 and SOUND_M XER NRDEVI CES. For example, the
following call reads the current volume of the microphone input:

int vol;
if (ioctl(m xer_fd, SOUND_M XER_READ(SOUND_M XER_M C), &vol) == -1) {
/* An undefined m xer channel was accessed... */

}

The program should check if an error was returned from thei oct | call. The driver will return -1
and set er r no if the mixer chanmnel is not known or if thereisno mixer & all.

Thevolumesfor both stereo channelsare returned in the sameinteger variable. Theleast significant
byte gives volume for the left channel and the next 8 bitsfor the right channel. The upper 16 bitsare
undefined and should be ignored. For mono devices just the left channel value is valid (the right
channel valueis set to the left channel value by the driver).

Thevolume setting can be altered by usingthei oct | SOUND_M XER WRI TE. It worksjust like
SOUND M XER_READ, but in addition it alters the actual hardware volume of the channel. Note
that this call also returns the new volume in the variable passed as an argument to thei oct | call.
In some cases thevalue may be slightly different from the value passed to the call.

NOTE
TheSOUND_M XER_WRI TEi oct | returnsthemodified volumeintheargument usedinthecall
A temporary variable should be used asthe argument, otherwisethevolumewill slidedown oneach
access.

Selecting the Recor ding Sour ces

22

The OSS driver has two cals for selecting recording sources. In addition, the
SOUND_M XER READ_RECMASK returns the devices which can be used as recording devices.

Thei oct| SOUND M XER READ_RECSRC returns a bit mask having a bit set for each of the
currently active recording sources. Thedefault is currently the microphoneinput but the application
should not assume this.

TheSOUND_ M XER WRI TE_RECSRCioctl can beused to alter the recording source selection. If
no bits are on, the microphone input will be used.

Some cards, such asthe SoundBlaster Pro, only allows one activeinput source at atime. Thedriver
correctly handlesrequestsfor invalid recording source sel ectionsand returnsavalid setting. A mixer
program should always check the recording mask after changing it. It should al so update the display
if the returned mask is something other than the requested one.

23

Audio Programming

I ntroduction

Digital audioisthe most common method used to represent sound insideacomputer. In thismethod,
sound is stored as a sequence of samples taken from an audio signal at constant time intervals. A
samplerepresentsthe volume of the signal at the moment when it was measured. |n uncompressed
digital audio, each sample requires one or more bytes of storage. The number of bytes required
depends on the number of channels (mono, stereo) and sampleformat (8 or 16 bits, mu-Law, etc.).
Thetimeinterval between samples determines the sampling rate, usually expressed in samples per
second or Hertz. Commonly used sampling rates range from 8 kHz (telephone qudity) to 48 kHz
(DAT tape).

The physical devicesused in digital audio are known asan ADC (Analog to Digital Converter) and
DAC (Digital to Analog Converter). A device containing both ADC and DAC iscommonly known
as a codec. The codec device used in SoundBlaster cards is often referred to as a DSP or Digital
Signal Processor. Strictly speaking, thisterm isincorrect since true DSPs are powerful processor
chips designed for signal processing applications rather than just a codec.

The sampling parameters affect the quality of the sound which can be reproduced from therecorded
signal. Themost fundamental parameter isthe sampling rate which limitsthe highest frequency than
can be stored. Nyquist's Sampling Theorem statesthat the highest frequency that can be reproduced
from asampled signal isat most half of the sampling frequency. For example, an 8 kHz sampling
ratepermitsrecording of signalsinwhich the highest frequency islessthan 4 kHz. Higher frequency
signals must be filtered out before feeding them to a DAC.

Theencoding format (or samplesize) limitsthe dynamicrange of therecorded signal (thedifference
between the faintest and the loudest signa that can be recorded). Theoretically the maximum
dynamicrange of asignd is6 dB for each bit of sample size. Thismeans, for example, that an 8-bit
sample size givesdynamic range of 48 dB while 16-bit resolution can achieve 96 dB.

There is a tradeoff with sound quality. The number of bytes required to store an audio sequence
depends on the sampling rate, number of channels, and sampling resolution. For example, storing
one second of sound with one channel at an 8 kHz samplerate and 8-bit sample size take 8000 bytes
of memory. Thisrequiresadatarate of 64 kbps, equivalent to one | SDN B channel. The same sound
stored as 16-hit 48 kHz stereo samples takes 192 kilobytes. Thisisa 1.5 Mbps data rate, roughly
equivalenttoaT1 or ISDN primary rate interface.

Looking at it another way, at the higher datarate 1 megabyte of memory can store just 5.46 seconds
of sound. With 8 kHz, 8-bit sampling the same megabyte of memory can hold 131 seconds of sound.
It is possible to reduce memory and communication costs by compressing the recorded signal but
thisis beyond the socope of this documert.

24

OSS provides three kinds of device files for audio programming. The only difference between the
devicesisthe default sample encoding used after opening the device. The/ dev/ dsp device uses
8-bit unsigned encoding while/ dev/ dspWuses 16-bit signed little-endian (Intel) encoding and
/ dev/ audi o uses logarithmic mu-law encoding. There are no other differences between the
devices. All of them work in 8 kHz mono mode after opening them. It is possible to change sample
encodingby usingi oct | calls,after whichall of thedevicefilesbehaveinasimilar way. However,
it isrecommended that the devicefile be selected based on the encoding to be used. This givesthe
user more flexihility in establishing symbolic links for these devices.

In short, it is possible to record from these devices using the normal open, cl ose, r ead and
wr i t e systemcalls. Thedefault parametersof the devicefiles(discussed above) have been selected
so that it is possible to record and play back speech and other signals with rdatively low quality
requirements. It is possible to change many parameters of the devices by calling the i oct |
functionsdefined later. All codec devices havethe capability to record or playback audio. However,
thereare deviceswhich don't haverecording capability atall. M ost audio deviceshavethe capability
of working in half duplex mode which meansthat they can record and play back but not at the same
time. Devices having simultaneous recording and playback capability are called full duplex.

Thesimplest way to record audio dataisto use standard UNIX commandssuch ascat anddd. For
example"cat /dev/dsp >xyz" recordsdatafrom the audio deviceto adisk filecalled xyz

until the command is killed (e.g. with Ctrl-C). The command "cat xyz >/ dev/ dsp" canbe
used to play back the recorded sound file (note that you may need to change the recording source
and level using amixer program before recording to disk works properly).

Audio devices are always opened exclusively. If another program tries to open the device when it
is already open, the driver returns immediately with an error (EBUSY).

General Programming Guidelines

It is highly recommended that you carefully read the following notes and also the Programming
Guidelines chapter of the Introduction section. These notes are likely to prevent you from making
the most common mistakes with the OSS API. At the very least you should read them if you have
problems in getting your program to work.

This section lists a number of things tha must be taken into account before starting programming
digital audio. Many of the features referred to in these noteswill be explained in more detail later
in this document.

Avoid extrafeatures and tricks. They don't necessarily make your program better but may make it
Incompatible with future devices or changes to OSS.

OpenthedevicefilesusingO_RDONLY or O WWRONLY flagswheneveritispossible. Thedriver uses
this information when making many optimizing decisions. Use O_RDWR only when writing a
program which is going to both record and play back digital audio. Even in thiscase, try to find if

25

it is possible to close and reopen the device when switching between recording and playback.

Beware of byte order (endian convention) issues with encoding of 16-bit data. Thisisnot aproblem
when using 8-bit dataor normal 16-bit sound cardsin little-endian (Intel) machines. However, byte
order islikely to cause problemsin big-endian machines (68k, PowerPC, SPARC, etc.). Y ou should
not blindly try to access 16-bit samplesassi gned short.

Thedefault recording sourceand recording level are undefined when an audio deviceisopened. Y ou
should inform the user aout thisand instrud them to use amixer program to change these settings.
It is possible to include mixer features in a program which works with digital audio, but it is not
recommended since it is likely to make your program mare hardware dependent. Mixers operate
differently andin fact may not be present at all.

Explicitly set all parameters your program depends on. There are default values for all parameters
but it is possible that somefuture devices may not support them. For example, the default sampling
speed (8 kHz) or sampling resolution (8-bit) may not be supported by some high end professional
devices.

Alwayscheck if an error code(-1) isreturnedfrom asystem call such asi oct | . Thisindicatesthat
the driver was nat able to executethe request madeby your program.

Inmost casesi oct | modifiesthevalue passed inasan argument. It isimportant to check thisvalue
since it indicates the value that was actually accepted by the device. For example, if the program
reguests a higher sampling rate than is supported by the device, the driver automatically uses the
highest possible speed. The value actually used is returned as the new value of the argument. As
well, the device may not support all possible sampling rates but in fact jug afew of them. Inthis
case the driver uses the supported sampling rate that is closest to the requested one.

Set sampling parameters always so that number of channels (mono/stereo) is set before selecting
sampling rate (speed). Failing to do this will make your program incompatible with cards such as
the SoundBlaster Pro which supports 44.1 kHz in mono but just 22.05 kHz in stereo. A program
which selects 44.1 kHz speed and then sets the device to stereo mode will incorrectly believe that
the deviceis still in 44.1 kHz mode when actually the speed is decreased to 22.05 kHz.

If examining an older program as an example, make sure that it follows these rules and that it
actually works. Many old programs were made for early prototype versions of the driver and they
are not compatible with later versions (2.0 or later).

Avoid writing programs which work only in 16-bit mode since some audio devices don't support
anything other than 8-bit mode. It is relatively easy to write programs so that they are capable of
output both in 8 and 16-bit modes. This makes the program usable for other than 16-bit sound card
owners. At least you should check that the device supports 16-bit mode beforetrying to output 16-hit
datato it. 16-bit data played in 8-bit mode (and vice versa) just produces aloud annoying noise.

26

Don'ttry to usefull duplex audio before checking that the device actually supportsfull duplex mode.

Alwaysread and write full samples. For example, in 16-bit stereo mode each sampleis4 byteslong
(two 16-bit sub-samples). In this case the program must always read and write multiples of 4 bytes.
Failing to do so will causelost sync between the program and the device sooner or later. Inthiscase
the output and input will be just noise or the left and right channels will be reversed.

Avoid writing programs which keep audio devices open when they are not required. This prevents
other programs from using the device. Implement interactive programs so that the device is opened
only when user activatesrecording and/or playback or when the programneedsto validate sampling
parameters (in this case it should handle EBUSY situationsintelligently). However, the device can
be kept open when it is necessary to prevent other programs from accessing the device.

Always check for and display error codes returned by calls to the driver. This can be done using
perror,strerror or someother standard method which interprets the error code returned in
er r no. Failing to do thismakesit very difficult for the end user to diagnose problems with your
program.

Simple Audio Programming

For simplicity, recording and playback will be described separately. It is possibleto write programs
which record and play back audio simultaneously but the techniquesfor doing thisare more complex
and so will be covered in alater section.

Declarationsfor an Audio Program

All programsusing the OSS API should include <soundcar d. h>which isaC language header
file containing the definitions for the API. The other header filesto be included are<i oct | . h>,
<uni std. h>and<f cnt | . h>. Other mandatory declarationsfor an audio application are afile
descriptor for the device file and a program buffer which is used to store the audio data during
processing by the program. Thefollowingisan example of declarationsfor asimple audioprogram:

27

Listing 2 - Definitionsfor an Audio Program

/ *
* Standard includes
*/
#i nclude <ioctl.h>
#i ncl ude <unistd. h>
#include <fcntl. h>
#i ncl ude <sys/soundcard. h>

/ *
* Mandatory vari abl es.
*/
#define BUF_SI ZE 4096
int audio_fd;
unsi gned char audi o_buffer[BUF_SI ZE] ;

In the above, the BUF _SI ZE macro is used to define size of the buffer allocated for audio data. It
is possible to reduce the system call overhead by passing more daa in each read and write call.
However, shorter buffersgive better resultswhen recording. Theeffect of buffer sizewill becovered
in detail in the section Improving Real Time Performance. Buffer sizes between 1024 and 4096 are
good choices for normal use.

Selecting and Opening the Sound Device

An audio device must be opened beforeit can be used. Asmentioned earlier, there arethree possible
devicefileswhichdiffer only inthedefault sampleencoding format they use(/ dev/ dsp used 8-bit
unsigned, / dev/ dspWuses 16-bit signed little-endian and / dev/ audi 0 uses mu-law). It is
important to open the right device if the program doesn't set the encoding format explicitly.

The device files mentioned above are actually just symbolic links to the actual device files. For
example, / dev/ dsp normally pointsto/ dev/ dspO, which isthe first audio device detected on
the system. The user hasthefreedom to set the symbolic linksto point to other devicesif it produces
better results. It is good practice to always uses the symboliclink name (e.g. / dev/ dsp) and not
the actual device name (e.g./ dev/ dsp0). Programs should access the actual device files only if
the device name is made easily configurable.

It is recommended that the device file is opened in read only (O_RDONLY) or write only
(O_VRONLY) mode. Read writemode (O_RDWR) should be used only whenitisnecessary to record
and play back at the same time (full duplex mode).

Thefollowing code fragment can be used to open the selected device definedas DEVICE_NAME).
Thevalueof open_modeshouldbeO WRONLY, O _RDONLY or O_RDWR. Other flagsare undefined
and must not be used with audio devices.

Listing 3 - Opening a Device File

28

if ((audio_fd = open(DEVI CE_NAME, open_node, 0)) == -1) {
/* Open of device failed */
perror (DEVI CE_NAME) ;
exit(1);

}

It is recommended that programs display the error message returned by open using standard
methods such asper r or orstrerror. Thisinformation islikely to be very important to the
user or support group trying to determine why the device cannot be opened. There is no need to
handle the various error messages differently. Only EBUSY (Device busy) can be handled by the
program by trying to open the device again after some time (although it is not guaranteed that the
device will ever become available).

A Simple Recording Application

Writing an application which reads from an audio deviceis very easy when the recording speed

isrelatively low, the program doesn't perform time consuming computations, there are no strict

real -time response requirements. Solutions to handle exceptions to this case will be presented

later in this document. All the program needs to do is to read data from the device and to process

or store it in some way. The following code fragment can be used to read data from the device:
Listing 4 - Sound Recording

int |en;

if ((len = read(audi o_fd, audio_buffer, count)) == -1) {
perror ("audio read");
exit(1l);

}

In the above example, variablecount definesthe number of bytesthe program wantsto read from
the device. It must beless or equal tothe size of audi o_buf f er . In addition, it must always be
an integer multiple of the sample size. Using an integer power of 2 (i.e. 4, 8, 16, 32, etc.) is
recommended as this works best with the buffering used internally by the driver.

Thenumber of bytesrecorded from the device can be used to measuretime precisely. Theaudio data
rate (bytes per second) depends on sampling speed, sample size and number of channels. For
example, when using 8 kHz 16-bit stereo sampling the data rate is 8000 * 2 * 2 = 32000
bytes/second. Thisisactually the only way to know when to stop recording. It isimportant to notice
that thereis no end of file condition defined for audio devices.

Anerror returned by r ead usually meansthat thereisa(most likely permanent) hardware error or
that the program has tried to do something which is not possible. In general it is not possible to

recover from errors by trying again, although closing and reopening the device may help in some
cases.

Simple Playback Application

A simple playback program works exadly like a recordng program. The only differenceisthat a
playback program callswri t e.

29

Setting Sampling Parameters

There are three parameters which affect the sound quality (and therefore memory and bandwicdth
requirements) of sampled audio data. These are:

sample format (sometimes called as number of bits),

number of channels (mono or stereo), and

sampling rate (speed).

NOTE
It isimportant to always set these parameters in the above order. Setting sampling rate before
the number of channels doesn't work with all devices.

Itispossibleto change sampling parametersonly betweenopen andthefirstr ead,wr i t e or other
i oct | call made to the device. The effect of changing sampling parameters when the device is
activeisundefined. Thedevicemust bereset usingthei oct | SNDCTL_DSP_RESET beforeit can
accept new sampling parameters.

Selecting Audio For mat
Sample format is an important parameter which affects the quality of audio data. The OSS API
supports several different sample formats but most devices support just a few of them. The

<soundcar d. h> header file ddfines the following sample format identifiers:

Table 3 - Sound Sample Formats

Name Description

AFMT_QUERY Not an audio format but an identifier used when querying the current audio format.
AFMT_MU_LAW Logarithmic mu-law audio encoding.

AFMT_A_LAW Logarithmic A-law audio encoding.

AFMT_I MA_ADPCM A 4:1 compressed format where a 16-bit audio sequence is represented using the

average of 4 bits per sample. There are several different ADPCM formats and this
one is defined by the Interactive Multimedia Association (IMA). The Creative
ADPCM format used by the SoundBlaster 16 is not compatible with this one.

AFMT_U8 The standard unsigned 8-bit audio encoding used in PC soundcards.

AFMT_S16_LE The standard 16-bit sigred little-endian (Intel) sample format used in PC
soundcards.

AFMT_S16_BE Big-endian (M68K , PowerPC, SPA RC, etc.) variant of the 16-bit signed format.

AFMT_S16 NE 16-bit signed format in machine’s native endian convention.

AFMT_S8 Signed 8-bit audio format.

30

AFMT_S32 LE Signed little-endian 32-bit format. Used for 24-bit audio data w here the datais
stored in the 24 most significant bits and the least significant 8 bits are not used
(should be set to 0).

AFMT_S32_BE Signed big-endian 32-bit format. Used for 24-bit audio data w here the datais
stored in the 24 most significant bits and the least significant 8 bits are not used
(should be set to 0).

AFMT_U16_LE Unsigned little-endian 16-bit format.
AFMT_U16_BE Unsigned big-endian 16-bit format.
AFMI_MPEG MPEG MP2/MP3 audio format (currently not supported).

Itisimportant toredizethat for most devicesjust the8-bit unsigned format (AFMT_U8) issupported
at thehardwarelevel (although there are high-end deviceswhich support only 16-bit formats). Other
commonly supported formats are AFMI_S16 LE and AFMI_MJ_LAW With many devices
AFMI_MJ_LAWsemulated using asoftware based (lookup table) trangl ation between mu-law and
8-bit encoding. This causes poor qudity when compared with straight 8 bits.

Applications should check that the sample format they require is supported by the device.
Unsupported formats should be handled by converting datato another format (usually AFMT_UB8).
Alternatively, the program should abort if it cannot do the conversion. Trying to play datain an
unsupported format is a fatal error. The reault is usually just loud noise which may damage ears,
headphones, speakers, amplifiers, concrete walls and other unprotected objects.

The above format identifiers have been selected so that AFMTI_U8 is defined as 8 and
AFMI_S16_LEis16. Thismakestheseidentifierscompatiblewitholderi oct | callswhichwere
used to select the number of bits. Thisisvalid just for these two formats so format identifiers should
not be used as sample sizes in programs.

AFMI_S16_NE is a macro provided for convenience. It is defined to be AFMI_S16 LE or
AFMT_S16_ BE depending of endian convention of the processor where the program is being run.

The number of bits required to store asampleis:
4 bits for the IMA ADPCM format,
8 bits for 8-bit formats, mu-law and A-law,
16 bits for the 16-bit formats, and
undefined for theMPEG audio format.

The sampleformat can beset using thei oct | call SNDCTL_DSP_SETFMT. Thefollowing code
fragment sets the audio format to AFMTI_S16_LE (other formats are similar):

31

Listing 5 - Setting Sample For mat

int format;

format = AFMI_S16_LE;

if (ioctl(audio_fd, SNDCTL_DSP_SETFMT, &format) == -1) {
/* fatal error */
perror (" SNDCTL_DSP_SETFMT") ;
exit(1);

}

if (format != AFMT_S16_LE) {

/* The device doesn't support the requested audio format. The
program shoul d use another format (for example the one returned
in "format") or alternatively it must display an error nessage
and to abort. */

}
TheSNDCTL_DSP_SETFMT i oct | call ssmply returnsthecurrently usedformat if AFMI_ QUERY
is passed as the argument.

It is very important to check that the value returned in the argument after thei oct | call matches
therequested format. If thedevicedoesn't support thisparticular format, it rejectsthecall and returns
another format which is supported by the hardware.

A program can check which formats are supported by the device by calling i octl
SNDCTL_DSP_GETFMIS asin thelisting below:

Listing 6 - Checking for Supported Formats

int mask;
if (ioctl(audio_fd, SNDCTL_DSP_GETFMTS, &mask) == -1) {
/* Handle fatal error ... */

}
if (mask & AFMI_MPEG) {
/* The device supports MPEG format ... */

}

NOTE
SNDCTL_DSP_GETFMTS returns only the sample formas that are actually supported by the
hardware. It is possible that the driver supports more formats using some kind of software
conversion (signed to unsigned, big-endian to little-endian or 8-bits to 16-bits). These emulated
formatsare not reported by thisi oct | but SNDCTL_DSP_SETFMT accepts them. The software
conversions consume asignificant amount of CPU time so they should be avoided. Usethisfeature
only if it is not possible to modify the application to produce the supported data format directly.

AFMT_MJ_LAWsadataformat whichissupported by all devices. OSSvesionsprior to3.6 always
reported thisformat in SNDCTL_DSP_CGETFMT'S. Version 3.6 and later report it only if the device
supports mu-law format in hardware. This encoding is meant to be used only with applications and

32

audio files ported from systems using mu-law encoding (such as SunQOS).
Selecting the Number of Channels (M ono/Ster eo)

Most modern audio devices support stereo mode. The default mode is mono. An application can

select the number of channels calling i oct | SNDCTL_DSP_CHANNELS with an argument

specifying the number of channels(see listing 7). Somedevices support up to 16 channels.
Listing 7 : Setting Number of Channels

int channels = 2; /* 1=nono, 2=stereo */
if (ioctl (audio_fd, SNDCTL_DSP_CHANNELS, &channels) == -1) {
/* Fatal error */
perror (" SNDCTL_DSP_CHANNELS") ;
exit(1l);
}
if (channels != 2)
/* The device doesn't support stereo node ... */

}

NOTE
Applications must select the number of channels and number of bits before selecting sampling
speed. There are devices which have different maximum speeds for mono and stereo modes. The
program will behave incorrectly if the number of channelsis changed after setting the card to high
speed mode. The speed must be selected before thefirstr ead or wr i t e call to the device.

An application should check the value returned in the variabl e pointed by the argument. Many ol der
SoundBlaster 1 and 2 compatible devices don't support stereo. Aswell, there are high end devices
which support only gereo modes.

Selecting Sampling Rate (speed)

Sampling rateisthe parameter that determines much of the quality of an audio sample. TheOSSAPI
permits selecting any frequency between 1 Hz and 2 GHz. However in practice there are limits set
by the audio device being used. The minimum frequency is usualy 5 kHz while the maximum
frequency varies widely. Some of the oldest sound cards supported at most 22.05 kHz (playback)
or 11.025 kHz (recording). The next generation supported 44.1 kHz (mono) or 22.05 kHz (stereo).
With modern sound devicesthe limit is 96 kHz (DVD quality) but there are still few popular cards
that support just 44.1 kHz (audio CD quality).

The default sampling rate is8 kHz. However an application should not depend on the default since

therearedevicesthat support only higher sampling rates. The default ratecould be ashigh as48 kHz
with such devices

33

Codec devicesusually generate the sampling clock by dividing thefrequency of ahigh speed crystal
oscillator. In thisway it is not possible to generate all possible frequenciesin the valid range. For
thisreason the driver always computesthe valid frequency whichis closest to the requested one and
returns it to the calling program. The application should chedk the returned frequency and to
compare it with the requested one. Differences of few percents should be ignored since they are
usually not audible.

With some professional devicesthe sampling rate may be locked to some external source (S/PDIF,
AES/EBU, ADAT, or world clock). InthiscasetheSNDCTL_DSP_SPEED ioctl cannot changethe
sampling rate, instead the locked rate will be returned. This type of exceptional condition will be
explained in the README file for the particular low-level sound driver.

The following code fragment can be used to select the sampling speed:

Listing 8 - Setting Sampling Rate

int speed = 11025;

if (ioctl (audio_fd, SNDCTL_DSP_SPEED, &speed)==-1) {
/* Fatal error */
perror (" SNDCTL_DSP_SPEED") ;
exit (Error code);

if (/* returned speed differs significantly fromthe requested one... */) {
/* The device doesn't support the requested speed... */
}
NOTE

Applications must select the number of channels and number of bits before selecting speed. There
are devices which have different maximum speeds for mono and stereo modes. The program will
behave incorrectly if number of channels is changed after setting the card to high speed mode.
Speed must be selected before thefirstr ead or wr i t e call to the device.

Other Commonly Used i oct | Calls

It is possible to implement most audio processing programs without using any i oct | calls other
than the three described earlier. This is possible if the application just opens the device, sets
parameters, callsr ead or wr i t e continuously (without noticeable delays or pauses) and finally
closes the device. Thiskind of application can be described as stream or batch application.

There are three additional calls which may be required with slightly more complicated programs.
All of them do not require or return an argument (just use an argument of 0).

Thei oct | SNDCTL_DSP_SY NC can beused when an application wantstowaituntil thelast byte
written to the device has been played (it doesn't wait in recording mode). When that occurs, the call
resets(stops) the device and returns back to the calling program. Notethat this call may take several
seconds to execute depending on the amount of datain the buffers. Closing any sound device cdls

34

SNDCTL_DSP_SYNC implicitly.

Thei oct| SNDCTL_DSP_RESET stopsthe deviceimmediately and returnsit to a state whereit
can accept new parameters. It shouldnot be called after opening the device asit may cause unwanted
side effects in this situation. The call is only required when recording ir playback needs to be
aborted. In general, opening and closing the device is recommended instead of using
SNDCTL_DSP_RESET.

Thei oct| SNDCTL_DSP_POST isamorelightweight version of SNDCTL_DSP_SYNC. It just
tellstothedriver that thereislikely to beapausein the output. Thismakesit possiblefor the device
to handle the pause more intelligently.

NOTE
All of thesei oct | callsarelikely to cause clicksor unnecessary pausesin theoutput. Y ou should
use them only when they are required.

Therearefew placeswherethese calls should beused. Y ou shouldcall SNDCTL_DSP_POST when
your program is going to pause continuous output of audio datafor relatively long time. Thiskind
of situation is, for example, the following:

after playing a sound effect when a new one is not started immediately (another way is to
output silence until next effect starts);

before the application starts waiting for user input;
before starting lengthy operation such as loading alarge file to memory.

The functions SNDCTL_DSP_RESET or SNDCTL_DSP_SYNC should be called when the
application wants to change sampling parameters (speed, number of channels or number of bits).

The application must call SNDCTL_DSP_SYNC or SNDCTL_DSP_RESET before switching
betweenrecording and playback modes (or alternatively it should close and reopentheaudio device).

You can use SNDCTL_DSP_RESET when playback should be stopped (cancelled) immediately.
Call SNDCTL_DSP_RESET after recording (after thelast read fromthedevice) if you are not going
to close the device immediately. This stops the device and prevents the driver from displaying an

unnecessary error message about recording overrun.

Call SNDCTL_DSP_ SYNC when you want to wait until all data has been played.

Interpreting Audio Data

35

Encoding of audio datadepends on the sample format. There are veral possible formats, the most
common of which are described here.

Mu-law (L ogarithmic Encoding)

Thisisaformat that originated from digital telephonetechnol ogy. Each sampleisrepresented asan
8-bit value which is compressed from the original 16-bit value. Due to logarithmic encoding, the
value must be converted to linear format before it is used in computations (two mu-law encoded
values cannot simply be added). Theactual conversion procedure is beyond the scope of thistext.
Avoid mu-law if possible and use the 8 or 16-bit linear formats instead.

8-bit Unsigned

Thisisthe normal PC sound card (SoundBlaster) format which is supported by practically all sound
hardware. Each sampleis stored in an 8-bit byte. The value of O represents the minimum level and
255 the maximum. The neutral level is 128 (0x80 in hexadecimal). In practice thereis some noise
in the silent portions of recorded files, so the byte values may vary between 127 (0x7f) and 129
(0x81).

TheC datatypetobeusadisunsi gned char . Toconvert fromunsignedto signed 8-bit formats,
subtract 128 from the value to be converted. Exclusive ORing value with 0x80 doesthe same (in C
usethe expression "val ue ~= 0x80").

16-bit Signed

CAUTION
Care must be taken when working with 16-bit formats. 16-bit datais not portable and depends
on the design of both the CPU and audio device. The situation is simple when using a
little-endian x86 CPU with a normal soundcard. In this case both the CPU and the soundcard
use the same encoding for 16-bit data. However, thesame is not true when using 16-bit
encoding in a big-endian environment such as SPARC, PowerPC or HP-PA.

The 16-bit encoding normally used by sound hardwareislittle-endian (AFMI_S16 LE). However
there are machines with built-in audio chips which support only big-endian encoding.

When using signed 16-bit data, the C data type best matching this encoding is usually si gned
short . However, thisis true only in little-endian machines. In addition, the C standard doesn't
define the sizes of particular data types so there is no guarantee that short is 16 bits long in al
machines. For this reason, using an array of si gned short as an audio buffer should be
considered a programming error although it is commonly done in audio applications.

The proper way isto usean array of unsi gned char andto manually assemble/disassemblethe

36

buffer to be passed to the driver. For example:

Listing 9 - Handling 16-bit Data
unsi gned char devbuf[4096];
int applicbuf[2048];
int i, p=0

/* Place 2048 16-bit sanmples into applicbuf[] here */
for (i=0; i<2048; i+=2) {
/* first send the |l ow byte then the high byte */

devbuf [p++] = (unsigned char) (applicbuf[i] & Oxff);
devbuf[p++] = (unsigned char)((applicbuf[i] >> 8) & Oxff);
/* Wite the data to the device ... */

Disassembling the data after input from the file can be paformed in similar way (thisisleft asan
exercise for the reader).

The AFMT_S16 NE format can be used when aprogram wantsto encode or decode 16-bit samples
locally. It automatically selectstheright format for the CPU architecture being compiled for. Inthis
way it’s usually possible to simply use signed short format to store the samples.

The AFMT_S32 LE, AFMT_S32 BE, and AFMT_S32 NE formats are a 32-bit signed format
which can be used to store audio data of arbitrary precision. Datasmaller than 32 bitsis stored left
justified so that the unused bits areset to all zeroes. For example, 24-but datais store such that the
24 most significant bits are used and the 8 least significent are | eft as zeroes.

Encoding of Stereo Data

When using stereo data, there are two samples for each time slot. The left channel datais aways
stored before the right channel data. The samples for both channels are encoded as described
previoudly.

Thisis extended when more channels are used. For example, with 4 channels the sample valuesfor
each channel are send in turn.

Conclusions

The preceding shouldbe all you need to know when implementing basic audio applications. There
are many other i oct | callsbut they areusually not required. However, there are real-time audio
applications such as games, voi ce conferencing systems, soundanalysistools, effect processorsand
many others. In theseapplications more advanced techniques are required. These are coveredinthe
later section Advanced Programming Topics. Make surethat you understand all of the basi c concepts
before proceeding to the advanced section.

37

MIDI Programming

This section starts with a general introduction to MIDI, then covers progranming using both the
low-level API and the raw music interface.

What isMIDI?

The acronym MIDI stands for Musical Instrument Digital Interface. The MIDI 1.0 Detailed
Soecification defines both the hardware level interface and the communication protocol used for
communication between devices using a MIDI interface. It is primarily a data communication
specification but is also used in other ways. This section gives avery cursory overview of MIDI.

The hardware level MIDI interfaceis an asynchronous serial byte-oriented protocol similar to (but
not compatible with) the RS-232 standard. The data transfer rate is 31250 bits per second and
devices are connected using MIDI cables which use a5-pin DIN connector on each end. Onecable
can carry dataon just one direction; abi-directional connection requirestwo cables. More than two
devices can be connected together by daisy-chaining the devices.

M DI devicescommuni cateby sending messagesthroughthe MIDI cable Every message dartswith
a status byte and may have one or more addtiona data bytes. The status byte has 1 in the most
significant bit while the data bytes have 0. This meansthat the data bytes can take just 128 different
values and carry just 7 bits of information.

The upper four bits of a status byte specify the type of status message and the last 4 bits carry the
MIDI channel number. Status bytes OxFO to OXFF are reserved for system messages.

There are 16 possible channels in the MIDI cable. Each of them can be assigned to physically
separatedevices or devices may interpret the messages sent to al channels. Some parameters, such
as instrument (program) number, are assigned by channel so each device listening to a particular
MIDI channel will play using the same instrument number. The device hasthe freedom to interpret
the instrument numbe as it wishes.

For example, when a performer presses a key on a music keyboard, a NOTE ON messge is
transmitted on the MIDI cable. It starts with the status byte 0x9X (where the X is the channel
number). There are two data bytes following the status. The first is the note number, indicating
which key the performer pressed. The second specifies the velocity of the key press. The velocity
is used to control the volume and some other parameters of the played sound.

It isimportant to note that no sound is transferred through the MIDI interface, just instructions for
how the receiving instrument should be controlled.

A MIDI file contains MIDI messages and other data which can be used by MIDI ssquencers and
other applications. It isawell-defined interchange format which makesit possible to transfer songs

38

between virtually any application supportingthe format. These files commonly have the extension
m d.

Unlike some other file formats for storing musical information (e.g. mod), MIDI filesdon't contain
any instrument data. Theinstrumentsare defined by including someMIDI program change messages
into the files. The playing system has complete freedom to assign the actual instrument timbres for
the program numbes.

Low level MIDI Programming

I ntroduction

There is a separate device file for each installed MIDI interface. The device name contains two
decimal digits which specify the interface number. The interface number is shown in the output of
/ dev/ sndst at . For example, thedevicefilefor thefirstinstalled MIDI portis/ dev/ m di 00.
The name/ dev/ m di isasymbolic link tha points to the default MIDI device file, which is
usually / dev/ m di 00.

Thesedevicefileshavecapabilitiessimilar totheordinary / dev/ t t y interface. Everything written
to the device will be sent to the MIDI port as soon as possible (nat necessarily immediately, there
could be some earlier written bytes in the queue which delay the transmit). There are no timing
features, which makesit difficult to use these devicesfor sequencer type applications. Theintended
use of this interface is sending and receiving system exclusive messages. This is required, for
example, when making patch editorsand librarians for various MIDI synthesizers.

Reading from the device waits until thereis at |east one byte in the receive buffer. When the first
byteisreceived, the driver will not waitfor additional characters. Thismeans that the read usually
returns fewer bytes than requested. Since the MIDI transfer rate is fairly high (about 31 Kbaud),
severa byteswill bereceived beforethereading processfinally gets activatedandisableto continue
execution of ther ead call. On a50 MHz 486 system, for example, it can receive up to about 60
bytes at atime. On aslower or more heavily loaded system ther ead could return even more data
at once.

There are a couple of unnecessary delays in the current implementation, but they seem to be
harmless. For example, you can route the incoming MIDI data from one port into another using
"cat /dev/m di 00 >/ dev/ m di 01". Thereisno noticeable delay between akey presson
the keyboard and the sound on the synthesizer connected to/ dev/ m di 01.

The/ dev/ m di interface supports the sel ect system call, but currently only on the Linux
platform.

To use the raw MIDI devices, you will need some knowledge of the MIDI protocol. The official
MIDI 1.0 specification is sold by the MIDI Manufacturer's Association (MMA). There are some

39

books containing the most important parts of the protocol. In addition, various unofficial MIDI
specifications are available on the Internet, one of which is
ftp://mitpress.mit.edu/pub/Computer-M usic-Jour nal/Documents/M I DI.

Changing Parameters

The SNDCTL_M DI _PRETI MEi oct | function sets the timeout for which to wait for thefirst
MIDI message byte to be received. It accepts an integer parameter which specifies the timeto wait
in 100 ms steps. By default the driver waits indefinitely for data.

40

Raw Music I nterface

Background

Theraw music interface provides low-level accessto the FM synthesizer and the MIDI deviceson
the soundcard. Thisinterface is provided only in the commercial Open Sound System version (not
OSS/Free). The API definitions can be found in the file <dm h>.

/dev/dmfmO

By providing register level accessto the FM synthesizer chip, devel operscanusethe FM synthesizer
inapplicationsthat are not music or sequencer oriented. Examplesare signal generation and acoustic
research. By obtaining direct accessto the FM chip, you can generate custom FM soundsthat cannot
be played back via the sequencer. Y ou can control individual parameters and export the resulting
sound as a sequencer patch file.

/dev/dmmidiO

Onthe MIDI side, theraw music API provides simple read and write accessto the MIDI port. This
enablesapplicationsto providetheir own MIDI sequencing. Examplesof such applicationsareMIDI

lighting controllers and extended MIDI support. In contrast, the / dev/ mi di device in OSS
providesaTTY likeinterface and does provide intelligent MIDI processing. The raw music MIDI

device provides a direct interface to the MIDI device.

Applications That Use the Raw Music Interface

A number of sample applications that use the raw music interface can be downloaded for the OSS
web site. They are provided as pre-compiled binaries (with Motif) for the Linux x86 platform.

xfmedit - thisis an editor for controlling al the FM synthesizer's registers. This provides OPL-3
2-operator access.

xemf - Thisisaplayer for playing Creative Music Format (cmf) music files, which are aderivative
of the standard MIDI except tha the patches arecontained in the file. This application provides a
GUI for selecting the CMF file and tape-recorder like controls.

xmidi - Thisis a MIDI player which plays back MIDI files in the 4-operator mode of the FM
synthesizer. This application allow you to change the MIDI instrument on the fly.

xsynth - This an application which provides akeyboard interface. Y ou can either use the mouse to

click on the keys or use the computer keyboard to make the sound. It isavirtual synthesizer which
provides access to MIDI channels. It also provides a drum patern generator. Additionally, it also

41

allows you to record and play back MIDI filesviaan FM or wave-table synthesizer.

xmuseq - Thisisapiano-roll styleMIDI editor. It provides complete M1DI editing capabilitiessuch
as is found on Windows based MIDI editors such as Windjanmer. This is an evdving product.
There are plans to provide music notation support.

FM Synthesizer Interface
Introduction

The FM synthesi zer uses FM modul ation to perform tone generaion. The FM synthesizer supports
OPL-3 mode (2 or 4 operator stereo mode) or the older OPL-2 mode (AdLib mono mode). FM
synthesis interface to the device driver is provided through i oct | s. The following sections deal
with the basic FM synthesis programming techniques.

FM Synthesizer Spedfications:

YamahaYMF 262 OPL-3 Chip

AdLib Compatible OPL-2 mode

OPL-2mode (AdLib) supports9 channelsof 2-operator FM tonesor 6 channel sof 2 operator
FM tones and 5 percussion instruments

OPL -3 mode supports 18 channel s of 2-operator Stereo FM tonesor 6 channel s of 4-operator
and 6 channels of 2-operator FM tones and 5 percussioninstrument channds

FM synthesisusesamodulator cell and acarrier cell. The modulator cell modulatesthe carrier cell.
The FM synthesizer provides 36 cells comprising of 18 modulator cells and 18 carrier cells that
result in 18 simultaneous channels being generated. In essence, the 18 channels can generate any 2
operator note.

There are basically 2 modes supported by the FM synthesizer: OPL-2 and OPL-3. OPL-2 mode
consists of nine 2-operator note channels with mono output. OPL-3 mode consists of eighteen
2-operator note channels with stereo output or six 4-operator and six 2-operator channels. Both
OPL -2 and OPL -3 modes support 5 percussion instruments and when the rhythm mode issel ected,
the percussion instruments occupy 3 channels (1 channel for bass drum, %2 channel for the other 4
percussion instruments).

Data Structures

TheFM synthesi zer usesthreestructuresfor FM tonegeneration. Thedatastructuredm f m voi ce
setsthe voice parameters for the FM tone. The parameters do not change for a given type of voice.
The second datastructureusedisdm_f m_not e. Thisdata structure setsthe frequency and octave
and sounds the tone when activated for a particular channel. The final data structure is
dm_f m_par am Thisdatastructure controlstherhythm section aswell asglobal parametersfor the
FM synthesizer.

42

FM Voice Data Structure

struct dm fm voice

{
unsi gned char op; /* 0 for modulator and 1 for carrier */
unsi gned char voi ce; /* Channels of 2-o0op notes */
unsi gned char am /* Tremol o or AM modul ation effect flag - 1 bit */
unsi gned char vi brato; /* Vibrato effect flag - 1 bit */
unsi gned char do_sustain; [/* Sustaining sound phase flag -1 1 bit */
unsi gned char kbd_scal e; /* keyboard scaling flag - 1 bit */
unsi gned char harnonic; /* Harmonic or frequency nmultiplier - 4 bits */
unsi gned char scale_level; /* Decreasing volume of higher notes - 2 bits */
unsi gned char vol unme; /* Volume of output - 6 bits */
unsi gned char attack; /* Attack phase |evel of the note - 4 bits */
unsi gned char decay; /* Decay phase |level of the note - 4 bits */
unsi gned char sustain; /* Sustain phase |evel of the note - 4 bits */
unsi gned char rel ease; /* Rel ease phase | evel of the note - 4 bits */
unsi gned char feedback; /* Feedback fromop 1 or op 2 - 3 bits */

unsi gned char connection; /* Serial or parallel operator connection-1 bit */

unsi gned char left; /* Left channel audio output */
unsi gned char right; /* Ri ght channel audi o output */
unsi gned char waveform /* Waveform select - 3 bits */

}s
The fields of the gructure are usd as follows:

op - holds the type modulator or carrier operator. A value of 0 denotes a modulator cell and 1
denotes a carrier cell.

voi ce - holdsthevoice orthe channel number. There are 36 op cellsthat result in 18 channel sthat
can produce a note simultaneously. A value of 0 through 17 specify a channel. In rhythm mode,
channels 6, 7 and 8 cannot be used to generate melodic notes.

am- aflag (1-bit) that turns the AM modulation (tremolo) effect on or off. The rate for AM
modulation is 3.7 Hz.

vi br at o - aflag (1-bit) that turn the vibrato effect on or off. Therateis 6.4 Hz.
do_sust ai n - aflag (1-bit) that turns the sustained sound on or off. If do_sustain is 1 then the

sustaining sound is sound when the noteis played. If do_sustain is 0 then the diminishing sound is
selected when the note on (see the figure).

43

Figurel- do_sustain hit

do_sustain =0 do_sustain =1

har noni ¢ -a3bitfield (values0-7) which representsthe harmonic or themultiplication factor that
needs to be applied to the frequency(fnum). The following table specifies the multiplication factor
with respect to harmonic number.

Table 4 - harmonic values

Harmonic 0 1 2 3 4 5 6 7 8 9 10 (11 (12 [13 | 14 | 15

Multiplier 05 |1 2 3 4 5 6 7 8 9 10 |11 |12 (13 |14 | 15

kbd_scal e - aflag (1-bit) that turns on the keyboard scale rate. If kbd_scaleis 1 then the
attack/decay rates become fager as the pitch (fnum + octave) increases.
Table5 - kbd_scale values

Key Scale 0 1 2 3 4 5 6 7 8 9 10 (11 |12 | 13 | 14 | 15
KSR =0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
KSR =1 0 1 2 3 4 5 6 7 8 9 10 |11 |12 (13 |14 | 15

scale level - isa2 bit field (values 0-3) which produces a gradual decrease in note output level
towards higher pitches (octave+fnum). The following table shows the scale level and the
corresponding attenuation.

Table6 - scale level values

KSL 0 1 2 3

Attenuation 0 db/Octave 3 dB/Octave 1.5 dB/Octave 6 dB/Octave

vol une - a6 bit field (values 0-63) which represents the total output volume of the op. Maximum
attenuation is 47.25 dB. Attenuating the output from a modulator cell will change the frequency
spectrum produced by the carrier cell.

at t ack - a4-bit field (values 0-15) that sets the attack rate or the rising time of the sound.

44

decay - a4-bitfield (values 0-15) that setsthe decay rate or the diminishing time after the attack.

sust ai n - a4-bit field (values 0-15) that setsthe sustain level. For continuing sounds thesustain
level givesthe point of change where the attenuated soundsin the decay mode changesto a sound
having a constant level. For diminishing sounds, the sustainlevel gives the point where the decay
mode changes to a release mode.

r el ease - a4-bitfield (values 0-15) that setsthe rdeaselevel. For continuing sounds, therel ease
level defines the rate at which sound disappears after key_off. For diminishing sounds, the release
level indicates the attenuation after the sustain level is reached.

f eedback - a3 bit field (values 0-7) which determines the modulation factor for self-feedback.
Thisis applicable only to the modulator cell.
Table 7 - feedback bits

Feedback 0 1 2 3 4 5 6 7

Modulation 0 /16 /8 14 12 2 4

connecti on - aflag (1-bit) that describes the connection of the modulator and carrier. When
connection is 0 the carrier is chained to the modulator in aserial connection and produces true FM
tones. If connection is 1, the carrier and modulator are connected in parallel to produce two
simultaneous tones

wavef or m- a3 bit field (values 0-7) which specifies the shape of the waveform.

| eft -aflag (1 bit) field which enables (set to 1) the left output channel or disables (set to 0) the
left output channd.

ri ght -aflag (1 bit) field which enables (set to 1) the right output channel or disables(set to 0) the
right output channd.

FM Note Data Structure

The next data structure consists of parameters such as octave, channd and frequency. These
parameters vary compared to thedm f m voi ce characteristics.

struct dm fm note

{
unsi gned char voice;
unsi gned char octave;
unsi gned int fnum
unsi gned char key_on;

18 channel s of 2-op notes */

Octave number of the note - 3 bits */
Frequency of the note - 10 bits */
Cut put sound flag - 1 bit */

~ — — —
* F X *

}s

voi ce - holdsthe voice or the channel number. There are 36 op cellsresulting in 18 channel s that
can produce a note simultaneously. A value of 0 through 17 specify a channel. In rhythm mode,

45

channels 6, 7, and 8 cannot be used to generate mel odic notes.
oct ave - a3 bit value (values 0-7) which represents the octave number of the note.
f num- a 10 bit value (values 0-1023) which represents the frequency of the note.

key_on - aflag (1-bit) that voices the notes (i.e. sound is produced). When key onis1, soundis
produced. If key _onis0, no sound is produced. In order to sound a note the key _on should make a
0 to 1 transition. Hence, you need to set it to 0 and then set it to 1 in the FM synthesi zer.

FM Parameter Data Structure

The following is a desaription of the data structure used for the rhythm section and global FM
parameters.

struct dm_fm param
{
unsi gned char am depth; /* AM nodul ati on depth for AM modul ati on effect */
unsi gned char vib_depth; /* Vibrato depth for Vibrato effect */
unsi gned char kbd_split; /* split keyboard for kbd_scaling */
unsi gned char rhythm /* turn on rhythm mode */

unsi gned char bass; /* bass-occupi es channel 7(modul ator & carrier) */
unsi gned char snare; /* snare - occupies modul ator of channel 8 */
unsi gned char tonmom /* tomtom - occupi es modul ator of channel 9 */
unsi gned char cymbal ; /* cymbal - occupies carrier of channel 9 */

unsi gned char hi hat; /* hihat - occupies carrier of channel 8 */

}s

am dept h - aflag (1 bit) field which determines the amplitude modulation (tremolo) depth. The
attenuation is 4.8 dB when am_depth=1 and 1 dB when am_depth=0.

vi b_dept h - aflag (1 bit) field which determinesthe vibrato depth of the op cell. The attenuation
factor is 14% when vib_depth=1 and 7% when vib_depth=0.

kbd_spl it -aflag (1 bit) field which determinesthe split method to select the key scale number.
Thisfield is used to select the kbd_scale value. Depending on the pitch of the note (octave plus
fnum), akey scde number between 0 and 15 is generaed. Thiskey scale number is applied to the
attack/decay/austain/rel easerates depending whether kbd_scaleis1orO. If kbd_split=1thenthekey
scalenumber depends onthe most significant bit of thefrequency. If kbd_split=0thenthekey scale
number depends on the 2nd M SB of the frequency.

rhyt hm- aflag (1 bit) field. When rhythm=1, the channels 6,7 and 8 are used to generate
percussion instruments such as bass, snare, tomtom, hihat and cymbals. Hence, regular FM notes or
operators cannot be played on these channels.

bass - aflag (1 bit) field which turnson or off the bass drum percussion instrument. The bassdrum
requires a modulator and a carrier cell that occupy channel 6. Both operators require nate settings

46

(Attack/Decay/ Sustain/Rel ease/Octave/Fnum etc) but thekey onfield should beset to 0. Only when
bass=1 is the bass drum sound produced.

snar e - aflag (1 bit) field which turnson or off the snare drum percussion instrument. The snare
drum requiresamodul ator cell occupying channel 7. Themodulator cell needsto be set with the note
settings that simulate a snare drum but the key _on field must be 0. Snare drum sound is produced
when snare=1.

t ont om- aflag (1 bit) field which turns on of off the tomtom drums. The tomtom drum requires
acarrier cell occupying channel 8. The carrier cell needsto be set with note settings that resemble
thetomtom drum but thekey on field must be 0. Tomtom drum sound is produced when tomtom=1.

cynbal -aflag (1 bit) field which turns on or off thecymbal. The cymbd instrument requires a
modulator cell occupying channel 8. The modulator cell must be st with note settingsthat resemble
acymbal. Aswith theprevious percussion instrument, key on should be 0. Only when cymbal=1,
is the cymbal sound produced.

hi hat - aflag (1 bit) field which turns on or off the hihat. The hihat instrument requires acarrier
cell occupying channel 7. The carrier cell must be set with note settings that resemble a hihat. As
with the previous percussion instrument, key on should be 0. Only when hihat=1, isthe hihat sound
produced.

FM Synthesizer i oct| Functions

Inthissectionwewill examinethei oct | sthat areused to generate FM tones. Beforeyou canissue
thei oct | syou must first obtain the file descriptor using an open call on the/ dev/ sbpf nD
device. In the following examples we will use the file descriptor f nf d for the FM synthesizer
device.

FM_IOCTL_RESET

Thisi oct | isused to reset the FM synthesizer. After opening the FM device /dev/dmfmO it is
advisabletoissueareseti oct| . Thisi oct | takesno parameters and is used as follows:

i oct! (fmdev, FM_|OCTL_RESET, NULL);
FM_IOCTL_SET_MODE

Thisi oct | isusedto set the mode of the FM synthesizer. Thei oct | takesone parameterswhich
should be set to the value OPL2 or OPL3. OPL2 sets the FM synthesizer in OPL-2 or AdLib
compatible mode. In this mode only 9 channels of 2 op voices with mono output are permitted. In
OPL3 mode, there are 18 channels of 2 op with stereo output or 6 channels of 4 operators and 6
channelsof 2 operatorswith stereo output. The command to set the FM synthesizer in OPL-3 mode
isasfollows:

47

ioctl(fmfd, FM IOCTL_SET_MODE, OPL3);
FM_IOCTL_SET VOICE

Thisi oct | sets the voice parameters for the modulator and carrier operators. It accepts one
parameter typestruct dm f m voi ce. Thei oct | isused asfollows:

struct dm_fm_voice voice,
i oct | (fmfd, FM_IOCTL_SET _VOICE, &Vvoice),

FM_IOCTL_PLAY_NOTE

Thisi oct | isused to voice a particular FM channel which has been preset with the FM voice
characteristics. The parameter is of type struct dm_fm_note. Thei oct | isused asfollows:

struct dm fm note note;

not e. key_on = 0;

ioctl (fmfd, FM_IOCTL_PLAY_NOTE, ¬e);
note. key_on = 1;

ioctl (fnmfd, FM_IOCTL_PLAY_NOTE, ¬e);

FM_IOCTL_SET_PARAMS

Thisi oct | isusedto set global FM parametersaswell as control the percussion ingruments. The
parameter is of type structdm f m par ans. Thei oct | isused asfollows:

struct dm_fm params param
ioctl (fnfd, FM_I OCTL_SET_PARAMS, ¶m);

FM_IOCTL_SET_OPL

Thisi oct | isused to set the connection type for the 4 op mode. The parameter is abyte defining
the connection. If you want the synthesizer in 2-op mode thentheconn_t ype = 0x0. If you want
the synthesizer in 4-op mode with six 4-op channelsthenconn_t ype = Ox3F.

char conn_type = 0x3f;
ioctl (fmfd, FM_.I OCTL_SET_PARAMS, &conn_type);

Programming the FM Synthesizer

In this section we will write a ssmple program to play random notes on the FM synthesizer. The
example will demonstrate the capabilities of the device.

Listing 10 - Example FM Synthesizer Program
#include <stdio. h>
#include <fcntl. h>
#i ncl ude <mat h. h>

48

#include <sys/dm h>

#define VOI CES 18
#define RAND(bits) (random() & (1l<<(bits)) -1)
mai n()

int fnfd;

struct dm fm voice modul ator, carrier;
struct dm fm note note;

struct dm_fm params param

int channel _num

/* First we open the FM device using an open call */
fnmfd = open("/dev/dmf m0", O WRONLY);
if (fmfd < 0)
perror ("open");

/* Now we reset the FM synthesizer using the RESET ioctl */
if (ioctl (fmfd, FM_I OCTL_RESET) == -1)
perror("reset");

/* Now set the FM synthesizer in OPL3 node */
if (ioctl(fmfd, FM_IOCTL_SET_MODE, OPL3) == -1)
perror (" mde");

while (1) {
/* set gl obal parameters but do not turn on percussion section */
param am depth = RAND(1);
param vi b_depth RAND(1) ;
param kbd_split RAND(1) ;
param r hyt hm =
param bass = 0;
param snare = O;
param hi hat = 0;
param cynmbal = 0;
paramtomtom = 0
/* send the param structure to the FM synt hesizer */
ioctl (fmfd, FM_I OCTL_SET_PARAMS, ¶m);

0;

1

/* Play the note on all channels at the sanme tinme */
for (channel _num = 0; channel _num < VOI CES; channel _numt+)

{

Now fill in the modul ator cell structure using randomy generated
val ues and masking off the bits. Look at the definition

of RAND(bits)

/

* % ok ok F

modul at or.voice = channel _num
modul at or. op = 0;

modul at or. am = RAND(1);

modul at or. vi brato = RAND(1);
nmodul at or. do_sustain = RAND(1);
modul at or. kbd_scal e = RAND(1);
modul at or. connection = O;

nmodul at or. attack = RAND(4);
modul at or. decay = RAND(4);

nodul at or. sustain = RAND(4);
modul ator.rel ease = RAND(4);
modul at or. vol ume = RAND(6) ;
modul at or. scal e_l evel = RAND(?2);
modul at or. f eedback = RAND(3) ;
nmodul at or. wavef orm = RAND(3) ;

modul ator.l eft = RAND(1);
nmodul ator.right = RAND(1);
/* Send the modul ator structure to the FM synth */
if (ioctl(fmd, FM_IOCTL_SET_VOI CE, &nodul ator) == -1)
perror (" modul ator™);

Now fill in the carrier cell structure using randomy generated
val ues and masking off the bits. Look at the definition

of RAND(bits)

/

* % F Ok ok

carrier.voice = channel _num
carrier.op = 1;
carrier.am = RAND(1);
carrier.vibrato = RAND(1);
carrier.do_sustain = RAND(1);
carrier.kbd_scale = RAND(1);
carrier.connection = 0;
carrier.attack = RAND(4);
carrier.decay = RAND(4);
carrier.sustain RAND(4) ;
carrier.rel ease RAND(4) ;
carrier. harmnic = RAND(4);
carrier.volume = RAND(6);
carrier.scale_level = RAND(2);
carrier.feedback = RAND(3);
carrier.waveform = RAND(3);
carrier.left = RAND(1);
carrier.right = RAND(1);

/* Send the carrier structure to the FM synth */
if (ioctl(fnfd, FM_IOCTL_SET_VOI CE, &carrier) == -1)

perror("carrier");

/*
Now fill in the note structure with random octaves and frequencies.
Bef ore sounding the FM tone turn the note off and then key_on the note.
*/
note.voice = channel _num
not e. oct ave = RAND(3);
note. fnum = RAND(10);
note. key_on = 0;

if (ioctl(fmd, FM.I OCTL_PLAY_NOTE, ¬e) == -1)
perror("note");

not e. key_on = 1;

if (ioctl(fmd, FM_.I OCTL_PLAY_NOTE, ¬e) == -1)

perror("note");
/* sl eep between notes */
usl eep(100000);
} /*for |oop*/
} /*while loop */

Additional Noteson FM Programming

FM synthesisrequires many parameter fields to be set and sometimesit issimpler to use patchesto
simulate various instruments. The Sound Blaster Instrument (SBI) format provides a uniform
approach to programming the FM synthesizer. The SBI format only handles sound characteristics.
The program hasto provide the frequency and octave vd ues. Sounding of theFM tone occurswhen
the key_on bit is set on a particular voice channel. The following is a description of the SBI file
format (Note: the names in parentheses denote thedm f m_not e structure parameter).

50

Table 8 - SBI File Format

OFFSET (hex)

Description

00-03

File ID - 4 Bit ASCII String "SBI" ending with Ox1A

04 - 23

Instrument Name - Null terminated ASCI| string

24

Modulator Sound Characteristics

Bit7: AM Modulation (am)

Bit 6: Vibrato (vibrato)

Bit 5: Sustaining Sound (do_sustain)

Bit 4: Envelop Scaling (kbd_scale)

Bits 3-0: Frequency Multiplier (harmonic)

25

Carrier Sound Characteristics

Bit7: AM Moduation (am)

Bit 6: Vibrato (vibrato)

Bit 5: Sustaining Sound (do_sustain)

Bit 4. Envelop Scaling (kbd_scale)

Bits 3-0: Frequency Multiplier (harmonic)

26

Modulator Scaling/Output Level
Bits 7-6: Level Scaling (scale_level)
Bits 5-0: Output Level (volume)

27

Carrier Scaling/Output Level
Bits 7-6: Level Scaling (scale_level)
Bits 5-0: Output Level (volume)

28

Modulator Attack/Decay
Bits 7-4: Attack Rate (attack)
Bits 3-0: Decay Rate (decay)

29

Carrier Attack/Decay
Bits 7-4: Attack Rate (attack)
Bits 3-0: Decay Rate (decay)

2A

Modulator Sustain/Release
Bits 7-4: Sustain Level (sustain)
Bits 3-0: Release Rate (release)

2B

Carrier Sustain/Release
Bits 7-4: Sustain Level (sustain)
Bits 3-0: Release Rate (release)

2C

Modulator Wave Select
Bits 7-2: All bitsclear (0)
Bits 1-0: Wave Select (waveform)

2D

Carrier W ave Select
Bits 7-2: All bitsclear (0)
Bits 1-0: Wave Select (waveform)

51

2E Feedback/Connection

Bits 7-4: All bitsclear (0)

Bits 3-1: Modulator Feedback (feedback)
Bit 0: Connection (connection)

2F-33 Reserved for future use

The above description requires you to declare the following structures:

struct dm fm voice modul ator;
struct dm fm_voice carrier;
struct dm fm note note;

Now store the corresponding values from the SBI fileinto the respective structures. From the above
description, the programmer needs to provide are the following parameters:

modul at or. voi ce=carrier.voice=x (where x is a channel nunber between 0 and 17)
modul ator.left=carrier.left=x (where x is the |left audio output flag 0 or 1)
modul ator.right=carrier.right=x (where x is the right audio output flag 0 or 1)

modul ator.op = 0 (modul ator's op nunber is 0)

carrier.op =1 (carrier's op is 1)

note.voice = x (where x is a channel number from 0-17)

note. fnum= x (where x is a frequency number from 0-1023)
note.octave = X (where x is an octave number from 0-7)

note. key_on =1 (the note nust be keyed off and then keyed on)

Programming The FM Synthesizer Using SBI Files

Thefollowing code explainsthe mechanismto read an SBI format fileand play the note at frequency
800 in octave number 5.

Listing 11 - Sample Code to Read an SBI File
#i nclude <stdio. h>
#i nclude <fcntl. h>
#i ncl ude <errno. h>
#include "/sys/dm h"

#define FALSE O
#define TRUE 1

the voice struct to hold the SBI file */
the note struct to make the sound */
fnfd - FM dev handle; fd - SBI file */
buffer to hold the SBlI data fromfile */

struct dm fm voice op0, opl;
struct dm. fm note note;

int fmd, fd;

char instrument _buf[16];

mai n (argc, argv)

int argc;

char **argv;

{
fmfd = open("/dev/dmf m0", O _WRONLY);
ioctl (fnfd, FM_| OCTL_RESET) ;
ioctl (fnfd, FM_I OCTL_SET_MODE, OPL3);
set _parans();
fd = open(argv[1l], O _RDONLY);

open the FM device */
reset the FM device */
set nmode to OPL3 */

set gl obal FM params */
open the SBI file */

~~~ ~
* X X X F

52



/* now verify that it is truly an SBI instrunent file by reading the
* header
*/
if ('verify_sbhi(fd)) {
printf("file is not in SBI format\n");
exit (0);
}
get _instrument (fd); /* fill the voice structs */
play_instrument (); /* play the sound */
}
/* check for "SBI" + Ox1A (\032) in first four bytes of file */
int verify_sbi(fd)
int fd;
{
char idbuf[5]; /* get id */
| seek(fd, 0, SEEK_SET);
if (read(fd, idbuf, 4) 1= 4)
return( FALSE) ; /* conpare to standard id */
idbuf[4] = (char)O0;
if (strcnp(idbuf, "SBI\032") != 0)
return( FALSE) ; return( TRUE) ;
}
get _instrunment (fd)
int fd;
| seek(fd, 0x24, SEEK_SET);
read(fd, instrument_buf, 16);
/* Modul at or Characteristics */
if (instrument_buf[0] & (1<<7))
op0. vibrato = 1;
el se
op0. vibrato = 0;
if (instrument_buf[0] & (1<<6))
op0.am = 1;
el se
op0.am = O;
if (instrument_buf[0] & (1<<5))
op0. kbd_scale = 1;
el se
op0. kbd_scal e = 0;
if (instrument_buf[0] & (1<<4))
op0. do_sustain = 1;
el se
op0. do_sustain = 0;
op0. harmonic = instrument_buf[0] & OxOF
/* Carrier Characteristics */

if (instrument_buf[1]
opl.vibrato

el se

opl.vibrato =
if (instrument_buf[1]
opl.am = 1;
el se
opl.am = O;

if (instrument_buf[1]
opl. kbd_scal e
el se
opl. kbd_scal e

&
1;

1

0
&

(1<<7))
(1<<6))

(1<<5))
1;

0;

53



if (instrument_buf[1l] & (1<<4))
opl.do_sustain = 1;
el se
opl. do_sustain

= 0;
opl. harmonic =

instrument _buf[1] & OxOF;
/* Modul at or Scal e/ Vol ume Level */

op0. scal e_l evel = instrument_buf[2] >>6;
op0. volume = instrunment_buf[2] & 0x3f;

/* Carrier Scale/Volume Level */
opl.scal e_Il evel = instrument _buf[3] >>6;
opl.volume = instrument_buf[3] & 0x3f;

/* Modul at or Attack/ Decay */

op0. attack = instrunment_buf[4] >> 4;
op0. decay = instrunment_buf[4] & OxF;
/* Carrier Attack/Decay */
opl. attack = instrunment_buf[5] >> 4;
opl.decay = instrunment_buf[5] & OxF;
/* Modul at or Sustai n/ Rel ease */
op0. sustain = instrunment_buf[6] >> 4;
op0.rel ease = instrument_buf[6] & OxF;
/* Carrier Sustain/Release */
opl. sustain = instrument_buf[7] >> 4;
opl.release = instrument_buf[7] & OxF;
/* Modul at or Waveform */
op0. waveform = instrument _buf[8] & 0x03;
/* Carruer Waveform */
opl. waveform = instrunment_buf[9] & 0x03;

/* Modul at or Feedback/ Connecti on*/
op0. connection = instrument_buf[ OxA] & 0x01;
opl. connection = op0.connecti on;

op0. feedback = (instrunment_buf[OxA] >> 1) & 0x07;

opl. feedback op0. f eedback;

/* byte OxB - 20 Reserved */
}

play_instrument ()
{
/*
* Set the FM channel to channel 0. Fill in the rest of
* |ssue an ioctl to set the nodul ator parameters
*/
op0.op = O;
op0. voice = 0;
op0.left = 1;
op0.right = 1;
ioctl (fnmfd, FM_IOCTL_SET_VOI CE, &op0);
/*
Set the FM channel to channel 0. Fill in the rest of
Issue an ioctl to set the carrier paraneters
*/

opl.op = 1;
opl.voice = 0;

54

t he

t he

fields

fields

and

and



opl.left = 1;
opl.right = 1;
opl.volume = 63;

ioctl (fmfd, FM_I OCTL_SET_VOI CE,
/*
* Fill in the note structure and first key_off
*/

note.voice = O; /*

not e. octave = 5;
note. fnum = 800;
note. key_on = 0;

ioctl (fnfd, FM |OCTL_PLAY NOTE,
note. key_on = 1;
ioctl(fmfd, FM_|OCTL_PLAY_NOTE,

}

set _params()
struct dm_fm params p;
.am depth = 0
p.vi b_depth
p. kbd_split
p.rhythm = 0;
p. bass = 0;
p.snare = 0;
p
p
p
i

o

0;
0;

o

.tomom ;
.cynbal 0;
.hihat = 0;
octl (fmfd, FM_I OCTL_SET_PARAMS, &p);

FM Synthesizer in 4-Operator M ode

&op1l);
the note and then key_on.
sel ect channel 0 */

[/ *Key off*/
&not e) ;

/ *Key on*/
&not e) ;

Inthe4-op modethe FM synthesizer uses4 operators consi sting of two 2-op channels. From 18 2-op
channels, we can get six 4-op channels, with 5 channels for percussion (as described above) and
three 2-op channels used for FM voices. The diagram below describes how 18 2-op channels are

organized:

Figure 2 - 4-Operator Schematic for Modulator/Carriers

55



Thei oct| FM_| OCTL_SET_OPL isused to set the 4-op connection mask. Thisi oct | requires
a6 bit mask. If the mask is 0 then all the FM voice channels default to 2-op mode thusyielding 18
channelsor 15 voice plus 5 percussion channels. If the mask is set to Ox3F then the FM synthesi zer
is configured for six 4 op voice channels plus six 2 op voice channels. The six 2 op voice channds
can be configured for 5 percussion channels a3 voice channels or 6 voice channels. In the case of
the 4 -op channels the above diagram shows which two op channels go into building the six 4 op

Chanmel 1

a

S EEEEEREE!

Channel 0 Chatrme] 2

Chanmel 4

S LEBEEEEE

Channel 3 Chatme] 5

channels.

With 4 operators, thefollowing diagram shows how the operators can be connected. The connection
bitsfrom thefirst two operatorsisdesignated as CO and the connection bits from the remaining two

are designated as C1.

56

Figure 3 - Connection Possibilitieswith 4 operators



Mode 2 (C0=0, C1=1)

I e a e

Mode 1 (20=1, C1=0) _E‘ Mode 3(0C0=1, Cl1=1)
1

(2 3 1

MIDI Interface

I ntroduction

The MIDI interfaceis ahi-speed seria interface running at 31,250 baud. There are 8 data bits with
1 start and 1 stop bit. The dmmidiO device essentially provides simple read and write access to the
MIDI device on the sound card.

Table9liststhe MIDI channel voice messages. These are the most common messages, and are used
to control an instrument's voices.

57



Table9 - MIDI Channél Voice M essages

Status Byte Data Bytes Description

1000cccc (cccc is channel #) Onnnnnnn (Note Number) Note Off Event. This event is sent
0x80 - Ox8F Ovvvvvvy (Velocity) when a note is released.

1001cccc (cccc is the channel #) Onnnnnnn (Note Number) Note On Event. This message is
0x90 - Ox9F Ovvvvvvy (Velocity) sent when a note is depressed.
1010cccc (cccc is the channel #) Onnnnnnn (Note Number) Polyphonic K ey Pressure Event.
OxAO0 - OXAF Ovvvvvvv (New Velocity) This message is sent when the

velocity of a previously triggered
note is changed.

1011cccc (cccc is the channel #) Occccccc (Controller) Control Change Event. This
0xBO - OxBF Ovvvvvvv (New Value) message is sent when a controller
such as dials and pedals change
their value. Certain numbers are
reserved for standard controllers.

1100cccc (cccc is the channel #) Oppppppp (Program Number) Program Change Event. This event

0xCO0 - OxCf is sent to change the patch or the
instrument on a specified channel.

1101cccc (cccc is the channel #) Occccccce (Channel Number) Channel Pressure (After Touch).

0xDO - OxDF Use this message to send the single
greatest velocity of all notes
depressed.

1110cccc (cccc is the channel #) 01111111 (LSB 7 hits) Pitch Wheel Change. This message

OxEO - OxEf Oommmmmmm (MSB 7 hits) is sent when the pitch bend w heel is

changed. The center position has a
value of 0x2000. Pitch bend is
measured by a 14-bitvalue.

Table 10 summarizes the MIDI System Exclusive, System Common, and Sysdem Rea Time
Messages. System Exclusive messages are used for transferring datain a manufacturer-dependent
manner. System Common messages are directed & all MIDI receiversin a system. System Real
Time messages are used for synchronization between clock-based MIDI devices.

58



Table 10 - MIDI System M essages

Real Time/ System

Data Bytes

Description

0xFO System Exclusive

Variable Length

Usesto send Sequencer Specific M essages.
First Data Byte should be the
Manufacturer’s|ID. Message is ter minated
by oxF7 (EOX).

0xF1 Undefined

0xF2 Song Position

14-bit value, L SB fir st

Song Position used in Karaoke systems.

0xF3 Song Select

1 byte Song Number

Used to select a song in a list of stored songs
in a sequencer.

0xF4 Undefined

OxF5 Undefined

0xF6 Tune Request None Used to request analog synthesizersto tune
their oscillators.

O0xF7 EOX Terminator None Used to terminate a System Exclusive
message

O0xF8 Timing Clock None Use to sync devices such as drum machines.
Timing Clock messages are sent at the rate
of 24 clocks per quarter note.

0xF9 Undefined None

OxFA Start None Sentto gart a sequencer or external MIDI
unit.

0xFB Continue None Causes the device to pick up at the next
clock mark.

OxFC Stop None Sent to sop asequencer or external MIDI
unit.

OxFD Undefined None

OXFE Active Sensng None Sent every 300ms. It isused to implement a
timeout mechanism for areceiver to revert
back to its default state. OSS will filter this
byte out from the data received from a MIDI
port so applications will never see it in
incoming data.

OxFF System Reset None Initializes the M1DI controller to its power

on defaults. Applications should never write
this byte; it isreserved for future expansion
by OSS.

59



MIDI Note Specification

Table 11 shows the correspondence between MI DI note pitch numbers and note frequencies. For FM synthesis, the
octave is Smply the note pitch number divided by 12 (NP/12) and the frequency isnote pitch number in the note table
modulo 12 (table[NP%12]) where the note tableisthe table of note namesto frequencies described inthe section on FM
synthesizer programming.

Table 11 - MIDI Note Pitch Numbers and Frequencies

Note C C# D D# E F F# G G# A A# B
Octave

0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
76 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119
10 120 | 121 | 122 123 124 125 126 127

Reading From MIDI Instruments
In order to read input from aMIDI synthesizer, you need to first loop on reading the status byte.

Depending on the type of the status byte, additional bytes are read from the MIDI keyboard.
Reading data from the MIDI controller is achieved as follows:

1 Open the SoundBlaster MIDI device using anopen call. ThisreturnsaMIDI devicefile
descriptor.

2. Read one byte of statusinfo. Usear ead call on the MIDI device file descriptor to read 1
byte.

3. Decode the status byte using the table above. If the status byte requires 2 data bytes, then
read two bytes of data into different variables (onebyte at atime). If the status byte
requires 1 data byte then issue a single byte read.

4, Perform the necessary operations on the data (send it to the FM synthesizer).

60



5. Loop on reading the status info byte.

NOTE
Devices can make use of the running status feature of the MIDI protocol. Consecutive messages
of the same type can omit the status byte. This is a common source of confusion when decoding
MIDI messages.

Reading From MIDI FilesUsing Midilib

To read MIDI codes from MIDI filesin format 1 or O requires the use of the standard MIDI file
library which is supplied along with the software. Please read the documentation on reading
MIDI files using the library. The following example (taken from the library example)
demonstrates the scheme to read MIDI files and output music. MIDI files basically contain a
header with track and SMPTE time code information. The header is also responsible for the
tempo of the MIDI tune. Following the header is atrack start flag with SMPTE time codes
followed by a MIDI opcode described above followed by two or three bytes of data depending on
the MI1DI opcode. The following scheme describes how to process MIDI files for output to the
FM synthesizer or aMIDI synthesizer connected to theMIDI port.

1 First define your MIDI functions to peform the following basic MIDI codes:

Key Off

Key On

Program Change

Key Pressure

Channel Pressure

Pitch Wheel

Controller Change (Mf_parameter)
System Exclusive

These functions are called by the library and can be used to either hook into the FM synthesizer
or output directly viaawr i t e to the MIDI port.

2. From mai n, you need to initialize all the MIDI library function pointers to point to your
specific functions. Otherwise library defaults are taken. In most cases you will have to
define the MIDI library function M _get ¢ to point to alocal get ¢ type of function
which reads a character from the MIDI file and returnsit to the calling function in the
library. In order to define aget ¢ type of routine, you will have to pass a file descriptor
which isobtained using anf open system call.

3. Issue a call to midifile routine which reads the MIDI format 1 files and parses the
information.

61



4, Close the open file descriptor.

The C-code below describes how to declare local functions. The only functions you need to
define for parsing MIDI files are:

M _error = error;

M _header = txt_ header;

M _starttrack = txt_trackstart;
M _endtrack = txt_trackend;

M _on = txt_noteon;

M _off = txt_noteoff;

M _pressure = txt_pressure;

M _controller = txt_parameter;
M _pitchbend = txt_pitchbend;
M _program = txt_program

M _chanpressure = txt_chanpressure;
M _sysex = txt_sysex;

M _metam sc = txt_metam sc;

M _segnum = txt_netaseq;

M _eot = txt_netaeot;

M _timesig = txt_timesig;

M _snpte = txt_snpte;

M _tenmpo = txt_tenypo;

M _keysig = txt_keysig;

M _sqspecific = txt_metaspecial;
M _text = txt_metatext;

M _arbitrary = txt_arbitrary;

These functions handle the basic MIDI codes described above as well as handle errors, SMPTE
and SysEx codes found in mode MIDI Format 1 files. Y ou may wish to ignore them if you need
rudimentary MIDI capabilities. The following code uses an array to hold about 100000 MIDI
events which arewritten to the MIDI port of the SoundBlaster. This array is sorted according to
the SMPTE time code since MIDI files handle one track at atime.

Listing 12 - Reading a MIDI File

nft ext

EE

* Convert a MDI file to verbose text.
*/
#include <stdio. h>
#include <ctype. h>
#i ncl ude <time. h>
#include <fcntl. h>
#include "mdifile.h"

static FILE *F;

struct event {
char dat ao0;
char datal;
char dat az2;
int time_stanp;

}s

struct event m dievent;
int current_event = O0;

62



mai n(argc, argv)
char **argv;

{
FILE *ef

open();

int blastfd;

/* Start

/* qsort

if ( argc
F
el se
F
blastfd =

M _getc =

1)

efopen(argv[1],"r");

st din;

open("/dev/sbpm di 0", O_WRONLY);
/* Initialize the function pointer in the MDI file library */
initfuncs();

f

ilegetc;

processing the MDI fi

mdifile()
fclose(F);

1

le */

the events based on the time stanp */

gsort (m di event,

/* write the events out to the

}

for (i=0;

write(blastfd,
write(blastfd,

}
exit(0);

current _event,

si zeof (event),

compare);

M DI port. Wait for the time on the event */
i <current_event; i++) {
waitfor(m di _event[i].time_stanp);
m di _event[i].data0O, 1);
m di _event[i].datal, 1);
/* Wite the 3 byte of data only if necessary */

if (mdievent[i].bytes == 3)
write(blastfd, mdi_event[i].

/* This is the getc routine to read the MDI file */
filegetc()
{

}

return(getc(F));

/* This routine opens the M DI

FI LE *

ef open( nanme, node)
char *nane;
char *node;

{

"% I\ n",

FILE *f;
extern int

extern char

extern int

errno;
*sys_errlis
sys_nerr;

char *errness;
if ( (f=fopen(name, nmode)) == NULL ) {
(void) fprintf(stderr,"*** ERROR ***

file and flags errors

t[];

= sys_errlist[errno];

= "Unknown error!";

(void) fprintf(stderr,"**%**xxxkxskks*

name) ;
if ( errno <= sys_nerr )
errmess
el se
errmess
exit(1l);
return(f);

dat a3,

*/

Cannot

Reason:

1);

open

%\ n", errmess);

63



/* Conpare two events -- used for the gsort c-library function */
int conmpare(event *one, event *two)

return (one->time_stanp - two->time_stanmp)

}

/* suspend the programuntil the time is up for the event */
waitfor(long currtime)

static ulong |last_event = 0;
struct timeval tv;
ul ong usecs;

if (last_event == 0) {
|l ast _event = currtime;
return;
}
usecs = currtime - |ast_event;
|l ast _event = currtime;
tv.tv_sec = usecs/1000000;
tv.tv_usec = usecs % 1000000;
select(0,0,0,0, &tv);

}
/* print errors in the MDI file */
error(s)
char *s;
{

fprintf(stderr,"Error: %s\n",s);
}

/* Print the header information regarding M DI format, tracks and tenpo
t xt _header (format, ntrks, division)

{
printf("Header format=% ntrks=%
di vi si on=%d\ n", f ormat, ntrks, di vi si on);

}

txt_trackstart ()

printf("Track start\n");

}
txt_trackend()
{
printf("Track end\n");
}

/* Handl e key off events - Refer to M DI opcode chart */
t xt _noteon(chan, pitch, vol)

{
prtime();
printf("Note on, chan=% pitch=% vol =%\ n", chan+1, pitch, vol);
m di event [ current _event].dataO = chan;
m di event [ current _event].datal = pitch;
m di event [ current _event].data2 = vol
m di event[current _event ++] . bytes = 3;
}

/* Handl e key on events - Refer to M DI opcode chart */
t xt _noteoff (chan, pitch, vol)

64



prtime();
printf("Note off, chan=% pitch=%d vol =%\ n", chan+1, pitch, vol);

m di event [ current _event].data0 = chan;
m di event [ current _event].datal = pitch;
m di event [ current _event].data2 = vol;

m di event [ current _event ++] . bytes = 3;

}
/* Handl e key pressure event - Refer to M DI opcode chart */
t xt _pressure(chan, pitch, press)
{
prtime();
printf("Pressure, chan=% pitch=% press=%l\n", chan+1, pitch, press);
}
/* Handl e control change events - Refer to M DI opcode chart */
t xt _parameter (chan, control, val ue)
{
prtime();
printf("Parameter, chan=% cl1=% c2=%\n", chan+1, control, val ue);
m di event [ current _event].data0 = chan;
m di event [ current _event].datal = control;
m di event [ current _event ++] . data2 = val ue;
}

/* Handle pitch bend - Refer to M DI opcode chart */
t xt _pitchbend(chan, msb, | sb)

{
prtime();
printf("Pitchbend, chan=%d msb=%d | sb=%d\ n", chan+1, msbh, | sh);
m di event [ current _event].dataO = chan;
m di event [ current _event].datal = nsb;
m di event [ current _event].data2 = |sb;
m di event[current _event ++] . bytes = 3;
}
/* Handl e program change events - Refer to M DI opcode chart */

t xt _program(chan, program)

prtime();

printf("Program chan=% progranm=%\n", chan+1, program;
m di event[ current _event].data0 = chan;

m di event[current _event].datal = program

m di event [ current _event ++] . bytes = 2;

}

/* Handl e channel pressure events - refer to M DI opcode chart */
t xt _chanpressure(chan, press)

prtime();

printf("Channel pressure, chan=% pressure=%\n", chan+l, press);
m di event[ current _event].data0 = chan;

m di event [ current _event].datal = press;

m di event[current _event ++] . bytes = 2;

}

/* Handl e sysex events - Refer to M DI opcode chart */
t xt _sysex(l eng, mess)
char *nmess;

{
prtime();



printf("Sysex, leng=%d\n",|eng);
}

/* Unrecogni zed meta events in the MDI file - flag warnings */
txt_metam sc(type, | eng, mess)
char *ness;
{
prtime();
printf("Meta event, unrecognized, type=0x%02x | eng=%\n",type, | eng);
}

t xt _metaspeci al (type, | eng, ness)
char *ness;
{
prtime();
printf("Meta event, sequencer-specific, type=0x%02x
Il eng=%d\ n", type, | eng);
}

txt_metatext(type, | eng, nmess)
char *mess;
{
static char *ttype[] = {
NULL,
"Text Event", /* type=0x01 */
"Copyright Notice", /* type=0x02 */
"Sequence/ Track Name",
"I nstrument Name", [* ... */
"Lyric",
"Mar ker ",
"Cue Point", /* type=0x07 */
"Unrecogni zed"
b
int unrecognized = (sizeof (ttype)/sizeof(char *)) - 1;
register int n, c
regi ster char *p = ness; if ( type < 1 || type > unrecognized

type = unrecogni zed
prtime();
printf("Meta Text, type=0x%02x (%s)
|l eng=%d\n",type,ttype[type],leng);

printf (" Text = <")
for ( n=0; n<leng; n++ ) {
C = *p++;
printf( (isprint(c)||isspace(c)) ? "%" : "\\0Ox%2x" , c);
}
printf(">\n");
}
t xt _metaseq(num)
prtime();
printf("Meta event, sequence number = %\ n", num);

}
t xt _met aeot ()
prtime();

printf("Meta event, end of track\n");
}

t xt _keysig(sf,m)

66



prtime();
printf("Key signature, sharp/flats=%d m nor=%d\n", sf,m);
}
txt _tempo(tenpo)
long tenpo;
{
priime();
printf("Tenmpo, m croseconds-per-MDI-quarter-note=%\n",tenpo);
}

txt_timesig(nn,dd, cc, bb)
{

int denom = 1;
while ( dd-- > 0 )
denom *= 2;
prtime();
printf("Time signature=%d/ % M DI -cl ocks/click=%
32nd- notes/ 24-M DI - cl ocks=%d\ n",
nn, denom cc, bb);
}

/* Parse the SMPTE time stamp and print the information */
txt_smpte(hr, m,se, fr,ff)
{

prtime();

printf("SMPTE, hour=% m nute=% second=% frame=% fract-frame=%\n",

hr, m,se, fr,ff);

}

txt_arbitrary(leng, mess)
char *ness;

{
prtime();
printf("Arbitrary bytes, |leng=%d\n",|eng);
}
prtime()
printf("Time=4d ",M_currtine);
}
/* Initialize functions - refer to mdifile.h for details */

initfuncs()

M _error = error;

M _header = txt_header;

M _starttrack = txt_trackstart;
M _endtrack = txt_trackend;

M _on = txt_noteon;

M _off = txt_noteoff;

M _pressure = txt_pressure;

M _controller = txt_parameter;
M _pitchbend = txt_pitchbend;
M _program = txt_program

M _chanpressure = txt_chanpressure;
M _sysex = txt_sysex;

M _metam sc = txt_metam sc;

M _seqnum = txt_metaseq;

M _eot = txt_metaeot;

M _timesig = txt_timesig;

67



M _snpte = txt_snpte;

M _tenpo = txt_tenpo;

M _keysig = txt_keysig;

M _sqspecific = txt_metaspecial;
M _text = txt_metatext;

M _arbitrary = txt_arbitrary;



Music Programming

I ntroduction

This section describes the programming of different kinds of music and MIDI related applications
using OSS. These include full featured MIDI sequencers as well as simpler MIDI playback and
recording programs. The MIDI programming interfaces provided by OSS are based on events such
as key press and key release. The goplications using these interfaces don't produce theaudio data
sent to the speakers themselves. Instead they control some kind of hardware (synthesizers) which
perform the sound generation. For example, aMIDI playback application can send note on and off
messages to an external MIDI synthesizer or keyboard which is connected to a MIDI port using a
MIDI cable (the MIDI device can be internal to the computer, too).

Another approach isthat the application does all thisitself and produces a stream of audio samples.
These samples are sent directly to /dev/d9. This kind of approach is used by some well-known
MIDI and module players such as Timidity and Tracker. Implementing this kind of application is
beyond the scope of this guide.

Thebasi ¢ foundation behind the music programming interfaces of OSSistheMIDI 1.0 specification.
Whilethe API provided by OSS may look different from MIDI, there arealot of similarities. Most
events and parameters defined by the OSS API directly follow the MIDI specification. The few
differences between OSS API and MIDI are extensions defined by OSS. These extensions make it
possible to control built-in synthesizer (wave table) hardware in a way which is not possible or
practical with plain MIDI. When applicable, the OSS API follows the General MIDI (GM) and
Y amaha X G specifications which further specify how things work.

Y ou should have some degree of understanding of the MIDI and General MIDI specifications (the
more the better) before proceeding with this section. The official MIDI specification is available
from the MIDI Manufacturers Association (MMA). Their web site (http://www.midi.org) contains
some online information. Additional information can be found on various Internet sites as well as
from several MIDI related books. Information about the XG MIDI specification is available from
Y amaha (http://www.ysba.com).

Midi And Music Programming I nterfaces Provided By OSS

Open Sound System provides three different device interfaces for MIDI and music programming.
Each of them are intended for adlightly different use.

Fundamentals Of /dev/music

MIDI (music) is a highly real-time process. An experienced listener can pick very minor timing
(rhythm) errorsfrom the music being listened to, which makestiming accuracy oneof theman goals
of the OSS implementation. Unfortunately, general purpose (multiuser and multitasking) computer

69



systemsare not well suited to thiskind of tasks. For thisreason OSS has been implemented in away
which makes timing precise even in highly loaded systems

The key idea behind /dev/music and /dev/sequencer interfaces is to make the application and the
hardwarework asynchronously. Thisisimplemented by separating the application and the playback
logic using large buffers. The buffer can hold enough playback datafor several seconds. Since the
playback process occurs asynchronously in the background, the application can do other processing
(graphics updates, for example) without the need to babysit the musc playback. The only
requirement isthat it should write new data before the queue drains completely and causes audible
timing errors. Inasimilar way, input datais queued until the application hastimetoread it from the
buffer.

Queues and Events

The central part of the /dev/music and /dev/sequencer APIsis queuing. Thereis a queue both for
playback and recording. Everything written to the device is first placed at thetail of the playback
gueue. The application continuesit's execution immediately after the dataisput on the queue. This
happens immediately except in situations where there is not enough space in the queue for all the
data. In this case the application blocks until some old data gets played.

It's very important to notice that the playback is not complete when the write call returns. The
playback processstill continuesinthe background until all datahasbeen played. Thisdelay depends
on timing information included in the playback data and can sometimes be several minutes (even
hours or days in some cases). Even after the output buffer has drained, some notes not being
explicitly stopped may continueplaying (infinitely) until the application writesmore data containing
the note off command for thisnote. It's very important to understand this asynchronous behavior of
the API. Even when the application tells the playback engine to wait some time (even hours) the
associated write may returnimmediately. The goplication never waits until the requested timeis
occurred. After you understand this and have read the MIDI specification you know most the
important concepts regarding /dev/music and /dev/sequencer programming.

Similarly, al input dataisfirst appended to the recording queue where it sits until the application
reads them off. There is embedded timing information in the data read from the device file which
the application should analyze to acquire the actud time of the event.

Thedatawritten to or read from the devicefileisorganized asastream of events. Eventsarerecords
of 8 or 4 bytes containing a command code and some parameter data. When using /dev/music all
eventsare 8 byteslong. With /dev/sequencer some eventsare4 byteslong (mainly for compatibility
reasons with older software). Formatting of these events is defined in appendix A. However,
applications should never create the event records themselves. Instead they should use the API
macros defined later in this chapter.

The playback engine always processes the events in the order they are written to the device.
However, thereis anioctl call that can be used to send events immediately (ahead of the queued

70



data) to the engine. Thisfeature is intended to be used for playing real-time events that occur in
parallel to the pregenerated event stream stored in the playback queue.

Therearetwo maintypesof events. Timing eventsare commandsthat control timing of the playback
process. They are also included in the recording data before input events (if the time has changed
since the previous received event). The playback engine uses these events to delay playback as
instructed by the application. The playback engine maintains absolute time since starting the
playback (the application can restart the timer whenever it likes). When it encounters atiming event
it computesthetime when the subsequent event needsto be processed. It then suspendsthe playback
process until the real-time timer gets incremented to this value. After that moment, the playback
process continues by executing the next event in the queue (which can sometimes be another timing
event).

When an input event is received from one of the devices (usudly MIDI ports) thedriver writes a
time stamp event containing the current real time to the input queue and then appends an event
corresponding to the data received from the device. However, the timestamp is written only if it's
time is different from the previously received event (to prevent the input queue from filling up
unnecessarily in case of sudden input bursts). Finally, the application reads both these events from
the queue when it has time to process the input queue. It's possible for the application to mergethe
newly receivedinput events with theold playback databased on these timestamps.

Thereisafundamental difference in timing behavior between /dev/sequencer and /dev/music. The
/dev/sequencer device uses fixed timing based on the resolution of the system timer. In most cases
the system timer ticks once every 1/100th of second (100 Hz). However in some types of systems
thisrateisdifferent (such as 1000 Hz). It isthe application's respongbility to check the timing rate
before using the device. The /dev/music device uses an adjustable timer which supports selecting
different temposand timebases.

The second main type of event is active events. These events are played whenever they reach the
head of the playback queue. They are used mainly for sound generating purposes but also for
changing variousother parameters. These eventsareinstantaneous by definition (they don't consume
any time). However,in some casesthey may cause some processing delays, for exanplewhen abyte
iIssent toaMIDI port whose hardware level output buffer isfull. When no timing events are present
in the buffer, the playback engine plays all active events as fast as it can. The same thing also
happens when timing events have aready been expired when they are written to the devicefile.

MIDI Portsand Synthesizer Devices

The/dev/music and /dev/sequencer APIs are based on devices. There can befrom 0to N devicesin
the system at the same time. The API differentiates between these devices by using unique device
numbers. It'simportant to noticethat all these devices can be used at the sametime. For somereason
it lookslike most applicationsusing this APl use only one device at the sametime (which isusually
selected using a command line parameter). There are two main types of devices, described in the
following sections

71



MIDI Ports

MIDI portsare serid communication portsthat are present on almost every sound card. Usually they
are called MPU401 (UART) devices. There are even dedicated (professional) MIDI only cards that
don't have audio capabilitiesat all. A MIDI port isjust adumb seria port which doesn't have any
sound generation capabilities or other intelligence itself. All it does is provide the capability to
connect to an external MIDI device using standard MIDI cabling. An external MIDI device can be
afull featured M1DI keyboard or arack mounted tone generator without akeyboard. TheMIDI cable
interface can also be used to control almost any imaginable device from aMIDI controlled mixer
or flamethrower to awashing machine. The MIDI interfaceissimply used to send and receive bytes
of data which control the devices connected to the port. It's possible to have an amost unlimited
number of devices on the same MIDI interface by daisy-chaining them or by using external MIDI
multiplexing devices. So in practice, acommand sent to the MIDI cable may get processed by an
unlimited number of devices. Each of them react to the command depending on their interna
configuration.

Most sound cards have a so-called wavetable connector on them. This connector can be used to
connect a MIDI daughter card. Actually, the wavetable connector is jug a branch of the MIDI
interface of the parent sound card. Everything written to the MIDI port gets sent both to the wave
tabledaughter card and to the MIDI connection port (usually shared with ajoystick port) on the back
of the sound-card. Another way to add MIDI devicesto asound card isto solder aMIDI chip onthe
card itself. In practice this doesn't differ from the daughter card interface in any way.

The common thing between the variouswaysto implement MIDI devicesisthat OSS seesjust aport
which can send and receive MIDI data. In practice it doesn't know anything about the devices
connected to the port so it doesn't care about it. It's possiblethat there are no devices or even acable
connected to the port. In this case playback using this port doesn't generate any sound which may
confuse some use's.

Another common point between all devices conneded to MIDI portsisthat they are self contained.
The devices contain all the necessary instrument (patch) data. There is no need for the application
to worry about so called patch caching when using MIDI ports.

Internal Synthesizers

Synthesizer devices are sound chips (usually based on wave teble or FM synthesis) that are always
mounted directly on the sound card or system's motherboard. The other main differenceisthat they
providetighter connection to the OSSdriver. OSS hasdirect control of every hardwarelevel feature
of the synth chip while devices connected to aMIDI port can be controlled only by sending MIDI
messages to the port. This means that synth devices have usually some capabilities beyond ones
provided by plain MIDI (however thiswill not necessarily be true in the future). The drawback is
that both OSS and the application have additional responsibilities which make use of the (old)
/dev/sequencer API very tricky with them. For this reason, use of the /dev/sequencer intafaceis
strongly discouraged. The/dev/music API fixes most of these problems but |eaves some additional

72



taskssuch as socalled patch caching to the application (which will bedescribed | aterin thischapter).

The currently supported synthesizer chips are the following:

1.

Y amaha OPL2/OPL3 FM synthesizer. The OPL2 chip was used in the first widely used
sound card (AdLib) in the late 80s. OPL3 is it's successor, originaly introduced in the
SoundBlaster Pro and still widely used for DOS games compatibility in almost every sound
card. FM synthesisprovidesrich capabilitiesto produce synthetic sounds. However, it'svery
difficult to emulate acoustic instrument sounds usng it. In addition, the OPL3 chip has a
very limited amount of simultaneous voices which makesit practicdly obsolete. OPL4 isa
combined FM and wave table sound chip compatible with OPL 3.

Gravis Ultrasound (GUS) was the first wave table based sound card on the market. It
providesthe capability to play up to 32 simultaneousvoicesby synthesizing them fromwave
table samples stored on it's on board RAM (upto 8 MB in the latest models but just 512K
in the original one). The wave table capability made this card very useful for playing so
called module (.MOD, etc) music using 386 and 486 computers of the early 90s. However,
major advancesin CPU speeds have made this approach very impractical when compared
to mixing in software (except when avery large number of voicesare used at the sametime).
The main problem with GUS isit's limited mamory capacity which doesn't permit loading
thefull GM patch set smultaneously. Thismeansthat applications supporting GUS must be
ableto do patch loading/caching. Thedriver interface originally devel oped for GUS defines
a de facto APl which is supported by other wave table device drivers (of OSS) too. This
means that programs written for GUS work also with the other ones with some minor
modifications.

Emu8000 is the wave table chip used on SoundBlaster 32/63/AWE cards. It's very similar
with GUS but provides a GM patch set on ROM. This means that patch loading/caching is
not necessary (but still possible).

SoftOSS s a software based wave table engine by 4Front Technologies. It implements the
OSS GUS API by doing the mixing in software. This makes it possible to use any 16 hit
sound card (without wave table capabilities) to play with wavetable quality instruments.
However thismixing process consumes CPU cyclesand system RAM which can causesome
problems with performance criticd applications and/or on underconfigured systems.

In addition to the above, OSS supports some wave table chips which work as MIDI port type
devices.

Differ ences Between Internal Synthesizer and MI1DI Port Devices

There is no fundamental dfference between these two device types when usng the /dev/music
interface. The only practical difference is that the internal synth devices need some patch
management capabilitiesfrom the application. Together with libOSSlib these differences arerather

73



minimal.

However, the situation is very different with /dev/sequencer. In fact there is nothing common with
these device types. There are completely different interfaces for both of these devices. In addition
there are some differences between OPL 3 and wave table devices with /dev/sequence which make
it difficult to use. For this reason using the /dev/sequencer interface is not recommended.

The/dev/music and /dev/sequencer APl acts as amultiplexer which dispatches eventstoall devices
in the system. The application merges the events going to all devicesto the same output stream and
the playback engine sends them to the destination device. When recording it places input from all
input devicesto acommon input queue where the application picks them (the application should be
prepared to handle merged input from multipledevicesor to filter the unnecessary databased on the
source device number.

All devices known by the driver are numbered using an unique number between 0 and
number_of _devices- 1. However, the numbering is slightly different depending on the devicefile
being used. With /dev/sequencer separate numbering is used for internal synthesizer devices and
MIDI portswhile/dev/music knowsonly synthesizer devices(MIDI portsare masqueraded as synth
devicestoo). More information about device numbering will be given in the programming section.

Instruments and Patch Caching

The common feature between all MIDI and synthesizer devices is that they produce sound
synthetically. Very often they emulate other (acoustic) instrumentsbut many devicescan createfully
artificial instrument soundstoo. Practically all devices are multitimbral which meansthat they can
emulatemore than oneinstrument. Switching between different instruments/programsisdoneusing
MIDI program change messages (actually it's equivalent in the OSS API).

Programsare numbered between 0 and 127. The meanings of these program numbersaredetermined
(freely) by the playback device. However in practice all modern devices follow the General MIDI
(GM) specification which bindsthe program numbersto fixed instruments so that, for example, the
first instrument is an acoustic piano. It should be noted that in OSS (just like in the MIDI protoool)
device numbering starts from 0, however in many tables and books the numbering starts from 1.

OSS assumes that the devices are GM compatible and that the application using the APl is GM
compatibletoo. Theinstrument and program numbers are defined to be GM compatible. However,
it's possiblefor the application to use any other numbering scheme provided that the devices being
used support it.

To be able to produce any sound the synthesized device needs some kind of definition for the
instrument. The exact implementation depends on the type of the device. For example, with devices
using FM synthesis (OPL2/3) the instrument is defined by a set of few parameters (numbers).
Devices based on wave table synthesis use prerecorded instrument samples and some additional
control information. Theinformation required for oneinstrument by aparticular instrument iscalled

74



a patch.

In most cases al the instrument information is stored permanently in the device (for example on
ROM chips). Inthis casetheinstruments are alwaysthere and the playback application doesn't need
to careabout this. It'susually possibleto the application to modify the instruments or even to create
new ones but it's beyond the scope of this gude. However there are devices that don't have
permanently installed instruments. They just have a limited amount of memory in which the
instrument definitions need to be loaded on demand. This processis called patch caching. The OSS
API defines asimple mechanism which the application should use to support patch caching devices.
The core of this mechanism is OSSlib library which can be linked with the application.

Notes

Themain task in playing music using the /dev/music and /dev/sequencer interface isplaying notes.
For this purpose there are two messages in the MIDI specificaion. The note on message isused to
signal the condition where a key was pressed on the keyboard. The message contains information
about the key that was pressed and the velocity it was pressed. When receiving this message the
MIDI device behavesjust like an analog keyboard instrument (such as piano) by sounding avoice.
The pitch of the voiceisdetermined by thekey number and thevolumeisdetermined by thevel ocity
with which the key was hit. Other characteristics of the voice depend on the instrument that was
selected before the note on message.

After a note on message, the sound starts playing on it's own. Depending on the instrument
characteristicsit may decay immediately or continue playing indefinitely. In any case, each noteon
message should be followed by anoteoff message for the same notenumber. After thismessagethe
voicewill decay according to theinstrument characteristics (it may even aready havedecayed prior
the note off message).

Both the note on and the note off message contain a note number (0 to 127). The note number is
simply the number of the key on the keyboard. A value of 60 specifiesthe middle C.

The OSS API defines events for al MIDI messages including the note on and note off ones.
Voices and Channels

At the lowest level al devices produce sounds using a limited number of operation units called
voices. To play aMIDI note the device usually needs one voice but it's possible that it uses more of
them (thisiscalled layering). The numbe of simultaneously voices (degree of polyphony) islimited
by the number of vaices available on the device. With primitive devices the number of voices can
be very low (9 with OPL2 and 18 with OPL3). Most devices support 30 or 32 voices. Some more
recent devices support 64 or 128 voices which is the future trend.

When using the /dev/sequencer API the application needs to know how many voices are supported
by the particular device. It a so needs some kind of mechanism for allocating voice operatorsfor the

75



notes to be played. The voice number needsto be used as a parameter inall note related events sent
to the driver. Thistask isusually very complicated dueto need to handle out of voices situations.
For this reason it's recommended to use the /dev/music interface which handles all of this
automatically.

The /dev/music API is based channels, just like MIDI. There are 16 possible channels numbered
between 0 and 15. It's possible to assign a sepaate instrument to each channel. Subsequent notes
played on this channel will be played using the instrument previously assigned to the channel. Any
number of notes can be playing on each channel simultaneously. However, the number of notes
actually playing depends on the number of voices supported by the device. When using /dev/music
thereisno need to do the voice allocation by the application. The application just tellswhich notes
to play on which channels and the device itself takes care of the voice allocation. This makes
/dev/music significantly easier to use than /dev/sequencer.

Controlling Other Parameters

The MIDI specification contains some other messages in addition to the basic note on and note off
messages. They can be used to alter the characteristics of notes being played and they usually work
on achannel basis (i.e. they affed all notes played on aparticular channel). Most of these functions
are implemented using MIDI control change messages. The OSS API contains an evert for all
defined MIDI controllers.

Programming /dev/imusic and /dev/sequencer

In this guide we handle mainly /dev/music programming. The differences between /dev/music and
/ dev/sequencer interfaces will be described shortly whenever they are encountered in the text.

Initial Steps

This guide iswritten for OSS version 3.8 or later. Thereare afew additions made to the OSS API
in version 3.8 which mean that certain features will not work with ealier OSS versions (mainly
OSSlib). Inany case, at least version 3.5 of OSSisrequired (earlier versions are not supported any
more).

For ssmplicity reasonsit's assumed that the OSSlib interface is being used. OSSlib isalibrary that
handles patch caching in an almost transparent way. With OSSlib the application doesn't need to be
aware of the details of the particular synthesizer hardware being used.

The file libOSSlib.a (or 1ibOSSlib.so in some operating systems) is distributed as a part of the
commercial OSS software. Another way to obtainitisto download snd-util-3.8.tar.gz (or later) from
ftp://ftp.opensound.com/ossfree and to compileit locally. However, thisisrecommendedonly with
OSS/Free. To be able to compile OSSlib you should have OSS 3.8 or later installed on the system.
It'sal so possibleto compile OSSlib or applicationsusing it by obtaining the <soundcard.h> filefrom

76



the OSS 3.8 distribution but thisis not recommended or supported.

Touse OSSlib you should usethe-DOSSLIB -1/usr/lib/oss/include -L/usr/lib/ oss-|OSSlib options
when compiling and linking the application. For example:

cc -DOSSLIB -1/ug/lib/oss/include -L/usr/lib/oss -IOSSlibtest.c -0 test

It's fairly easy to make the application usable both with and without OSSlib by using an #ifdef
OSSLIB directive inthe places where there are differences between these cases.

An application using the/dev/sequencer or /dev/music APl srequiressome support code to be added
in the application. All of thisis present in the sample program given later in this chapter. This
additional code is required to support buffering used by the SEQ * macros defined in
<soundcard.h>. The following has to be present:

1. <sys/soundcard.h> must be included in each source file that uses the API.
2. Define for the buffer being used by the API.

3. Definition of the segbuf_dump() routinein case you are not using OSSlib (OSSlib contains
this routine).

/*

* Public domain skeleton for a /dev/music conpatible OSS application

*

* Use the included Makefile.music to compile this (make -f Makefile. music).
*/

/*
* Standard includes
*/

#include <stdlib. h>

#i ncl ude <stdi o. h>

#i nclude <unistd. h>

#i ncl ude <fcntl. h>

#i ncl ude <sys/soundcard. h>

/
Thi s program uses just one output device which is defined by the follow ng
macro. However the OSS APl permts using any nunmber of devices
si mul t aneously.

/

L

#define MY_DEVICE O /* 0 is the first avail able device */

/
The OSS APl macros assume that the file descriptor of /dev/nusic
(or /dev/sequencer) is stored in variable called seqfd. It has to be
defined in one source file. Other source files in the same application
shoul d define it extern.

/

L

77



int seqfd=-1;

A buffer needs to be allocated for buffering the events locally in

the program (prior witing themto the device file). The SEQ DEFI NEBUF
macro can be used to define the buffer. The argunent is the size of the
buffer (in bytes). 1024 is a good size (128 events).

E I I I

Not e t hat SEQ_DEFI NEBUF() should be used only in one source file in each
* application. In other source files you should use SEQ USE_EXTBUF() .

*/

#defi ne BUFFSI ZE 1024

SEQ_DEFI NEBUF( BUFFSI ZE) ;

/*
* seqgbuf _dunmp() routine is required only when OSSLib is NOT used. It's
* purpose is to wite buffered events to the device file.
*/
#i f ndef OSSLI B
/*
* NOTE! Don't ever define seqbuf_dunp() in two source files or when OSSlib
* is used. It may have unpredictable results.
*/
voi d seqbuf_dump ()

if (_seqbufptr)
if (wite (seqfd, _seqgbuf, _seqbufptr) == -1)
{

perror ("write /dev/nmusic");
exit (-1);

}
_segbufptr = 0;

}
#endi f
Opening the Device

Themusic devicefileto be used needsto be opened in the beginning of the program. A normal open
call can be used for this (fopen or other buffered 1/0 routines should not be used). Select /dev/imusic
or /dev/sequencer depending on your needs. Y ou need also to open OSSlib by calling OSS init() in
case you use OSSlib.

int error, ndevices, tnmp;

~

¥ % X X X Ok

First open the device file (/dev/music in this case but
/ dev/ sequencer will work in the same way). The device is
opened with O WRONLY since we are only going to wite. Use
O _WRONLY or O RDWR if you need to use input (too).

/

if ((seqfd=open("/dev/music", O _WRONLY, 0))==-1)
{
perror("/dev/music");

exit(-1);

/*
* Now initialize OSSlib if required.

78



*/
#i f def OSSLI B

if ((error=0SS_init(seqfd, BUFFSIZE)) != 0)
{

fprintf(stderr, "Failed to initialize OSSlib, error %d\n", error);
exit(-1);

#endi f

After opening the device you should check what devices are
avai l able. This can be done using the SNDCTL_SEQ NRSYNTHS,
SNDCTL_SEQ NRM DI'S, SNDCTL_SYNTH_| NFO and SNDCTL_M DI _INFO i oct |
calls which will be covered in detail |ater.

/*

* Check that the (synth) device to be used is available
*/

if (ioctl(seqfd, SNDCTL_SEQ NRSYNTHS, &ndevices)==-1)

perror (" SNDCTL_SEQ NRSYNTHS") ;
exit(-1);
}

if (MY_DEVICE >= ndevices)

fprintf(stderr, "Error: The requested playback device doesn't exist\n");
exit(-1);
}

Writing Events

Assaid earlier, the /dev/imusic APl isevent based. In addition to afew ioctl() cdlsthe only way to
use this API is by sending eventsto the device. To make this task easier a macro has been created
for each supported MIDI event. These macrosare named SEQ_* () and they usually take one or more
parameters. For example the SEQ_START_NOTE(device, channel, note, velocity) macro is used
to send aMIDI key down message to the given device (synthesizer or MI1DI port). This macro itself
doesn't writethe event directly to the devicefile. Instead it appendsthe event after the previousones
inprogramslocal buffer. Thislocal buffer was created using the SEQ DEFINEBUF(size) macroin
the beginning of the program. The events are queued there until SEQ_DUMPBUF() macroiscalled
by the program or the local queue becomes full (in this case SEQ DUMPBUF will be called
automaticly to prevent from overflow). SEQ_DUMPBUF just calls the segbuf_dump() routine
defined by the program or OSSlib depending on the situation.

Due to this buffering the application shoud call SEQ DUMPBUF() before it exits or before it
suspends writing new events for some reason (waiting for input).

The Minimal /dev/midi Program

By combining the above four code fragments together you have al the necessary initialization code
required in aprogram using /dev/music or /dev/sequencer. All thisprogram doesisplay anoteusing

79



the selected device This program is also available in the samples.tar.gz package available from
ftp://ftp.opensound.com/ossfree.

/*

* Setup timng parameters. The defaults may vary so set them
* explicitly.

*/

tnmp = 96;

if (ioctl(seqfd, SNDCTL_TMR_TI MEBASE, &tnp)==-1)

perror ("Set tinebase");

exit(-1);
}
tnmp = 60;
if (ioctl(seqfd, SNDCTL_TMR_TEMPO, &t np)==-1)
perror("Set tempo");
exit(-1);
}
/*
* Next use OSSlib to cache the instrument (if required). This is
* recommended to be done in advance (before SEQ START_TIMER()) since
* patch loading fromdisk to the device can be time consum ng. Load
* only the instruments that are required due to limted menory
* capacity of certain devices.
*
* NOTE! OSSLib |oads the instrument automaticly when SEQ _PGM CHANGE
* is called. Loading it in advance saves you from possible

* del ays associated with demand | oadi ng.
*/
SEQ _LOAD_GM NSTR(MY_DEVI CE, 0); /* 0=Acoustic piano */

/*

* Now we are ready to start playing. The first task is to start
* the timer. This is mandatory stem since otherwi se the timer

* will never get started. It's extremely inmportant to start the
* timer just immediately before writing the first event. Doing
* it too early will cause tenpo problems in the beginning.

*/

SEQ_START_TI MER() ;

/*

* Select the program instrument O on the M DI channel O.

*/

SEQ_PGM_CHANGE( MY_DEVI CE, 0, 0);

/*

* Start the note (60=M ddle C) on channel 0. Use 64 as velocity.
*/

SEQ _START_NOTE( MY_DEVI CE, 0, 60, 64);

/
Then have relative delay of 96 ticks. The delay is fromthe
previous timng event or fromthe time when SEQ START_TI MER()
* was cal l ed.

*/

SEQ_DELTA_TI ME(96) ;

E L

/ *

80



* Now stop the note. The sound will not stop immediately. The note
* just starts decaying and fades off.

*/

SEQ_STOP_NOTE( MY_DEVI CE, 0, 60, 64);

/
Have a final delay of 1000 ticks. This gives the last note(s) time
to decay naturally. Closing the device without this delay just

* aborts all voices prematurely.

*/

SEQ DELTA_TI ME(1000);

*  F

/
Finally flush all events still in the |ocal buffer (mandatory

step before closing the device or prior pausing the application
It's the SEQ DUMPBUF() call that actually wites the events to the
* devi ce.

*/

SEQ_DUMPBUF() ;

cl ose(seqfd);

exit(0);

E R

81



TheVirtual Mixer

OSS has an optional feature called software mixing which permits simultaneous playback of up to
8 audio streams. Thisfeature is a separately priced option and available only to the customers who
have purchased the M1X option. The seven day evaluation license also contains this option.

Tousethisoption you shauldfirst enableit by configuring thevirtual mixer driver. Thiscan bedone
by adding one of the "4Front Virtual Mixer" devices using the "Add new card/device" function of
soundconf.

NOTE
In earlier versions of OSS the SoftOSS driver also enabledvirtual mixer. Since OSS 3.9.1ethisig
no longer true. Instead of SoftOSSyou should configurethe"Virtual Mixe™" device. Thiswill alsg
enable SoftOSS. Don't configure SoftOSS at the same time as the virtual mixer.

After the software mixing driver isinstalled the additional 8 audio deviceswill be shown as below
by "cat /dev/sndstat":

2. Soft(OSS vl1.2 CH #0
3: Soft(OSS vl1.2 CH #1
4: Soft 0SS v1.2 CH #2
5: Soft(OSS vl1.2 CH #3
6: Soft(OSS vl1.2 CH #4
7: Soft(OSS vl1.2 CH #5
8: Soft (0SS vl1.2 CH #6
9: 2

Sof t OSS v1.

Intheabove casethefirst softwaremixing deviceis/ dev/ dsp2(/ dev/ audi 02) andthelast one
is/ dev/ dsp9 (/ dev/ audi 09). You can have up to 8 of these devices active at the same time.
Note that the real audo device (usually / dev/ dsp0) will not be available while any of the
software mixing devicesare open. Al so, the software mixing devices cannot be used whilethe actual
hardware device (/ dev/ dsp0) is open.

Totest the virtual mixer, get acouple of wav files(eg. sanpl el. wav andsanpl e2. wav) and
type a command such as the following:

pl ay -d/dev/dsp3 sanplel.wav & play -d/dev/dsp4 sanpl e2.wav &

At this point you should hear both the wav files playing simultaneously. Most applications open
/ dev/ dsp or/ dev/ dspOby default. Y ou can makethe applicaion useavirtual audio device by
simply changingthelink/ dev/ dsp topointto/ dev/ dsp3or/ dev/ dsp4 or any onetheother
virtual audio devices. However, you cannot use the virtual audio device and the physical audio
device (/ dev/ dspOand/ dev/ dspl) simultaneously. Y ou will notice that there is degradation
of audio quality using the virtual audio device - this is because the driver does sample rate

82



conversion in software. In future versions of OSS therewill beanew /dev/ vdsp devicethat will
automatically assign an available virtual device to each application using /dev/ vdsp. This will
mean that you won't have to manually assign avirtual audio device to each application.

83



SoftOSS

I ntroduction

Until today a special wave table soundcard has been required to play high quality MIDI music.
SoftOSSis akernel module which permits doing the same using any inexpensive 16-bit soundcard
together with a sufficiently fast CPU (see the System requirements section).

SoftOSSis 100% compatible with the existing wave table APl of OSS which has earlier been used
by the Gravis Ultra Sound (GUS) driver. This means that all Linux applications work without
modification with SoftOSS.

Technical Background

SoftOSS is a virtual wave table engine that is tightly integrated with the MIDI and audio
functionality of OSS. The SoftOSS engine uses CPU cycles to mix pre-recorded audio samplesin
control of MIDI information coming from any application using / dev/ sequencer or
/ dev/ nusi ¢ (formerly knownas/ dev/ sequencer 2) devicefiles. Theresulting 16-bit stereo
audio datastreamisthen played using an ordinary (16-bit) soundcard (support for 8-bit sound cards
will be introduced later). Since the mixing is done inside kernel it doesn't suffer from other
processing activity in the system. For thisreasonit is possibleto perform CPU intensive tasks at the
sametime when using SoftOSS. Sound quality isas good asin alightly loaded system (other tasks
just run slower depending on number of currently active SoftOSS voices/notes).

SoftOSSisfully compatible with the sound sample loading API originally developed for the GUS
driver of OSS. This means all applicaions which support loading samples to GUS will work with
SoftOSS without any changes.

Thefinal version of SoftOSSwill includealibrary called OSSlib which permits on demand loading
(patch caching) of wave table samples from any programs using the /dev/ music
(/ dev/ sequencer ) APl of OSS. Together with changesmadeto<sys/ soundcar d. h>, this
library permits adding patch caching to existing applications using / dev/ sequencer and
/ dev/ nusi ¢ with very minimal changes.

The first release of this OSSlib library will permit loading samples from pat format (GUS)
instrument filesand from standard audiofiles(au, wav). Later versionswill support other patchfile
formats such as SoundFont (sf 2). You will need a GUS compatible patch set to run SoftOSS.

A freewareversion of thislibrary will bereleased to permit devel oping OSS compatibl e applications
with OSS/Free. In addition the freeware library will permit using applications written for OSS to
work aso with OSS/Free without recompiling.

Specification of the new / dev/ nusi ¢ API will be released after development of OSSlib is

84



complete.
Applications of SoftOSS Technology

SoftOSSismainly designed for playing MIDI music but it'swell suited for some other applications
too, including:

1 Sound effects in games (not necessarily background music). Since the "mixing” is done at
real time priority inside kernel, it's possible to get timing precision and reliability that isnot
possible with any kind of process based mixing. With SoftOSS sound effects will play
perfectly even in dightly under-configured machines. In addition, sound effects
programming using SoftOSS and OSSlib is "fire and forget". After an effect is started the
application itself doesn't need to worry about it. Of cause, the same s possible with awave
table card too. The best thing is that SoftOSS is perfectly compatible with hardware wave
tabledevicesso compdibility with SoftOSSensures compatibility with wavetabl e cardstoo.

2. Sound effects in simulaors and similar applications. SoftOSS technology permits loading
practically unlimited amount (currently thereisan artificial limit of 8 MB) into the memory
(it'slimited just by amount of RAM installed in the system). Starting soundsiseasy and it's
even possible to change it's volume and panning (3D support is planned in the future). As
with games, SoftOSS can later be replaced by a hardware wave table card without any
changesto the application. However with alimited number (4 to 8) of simultaneous voices
there is no benefit in using an expensive hardware wave table card.

3. Playback of pre-recorded messages, alerts, time signals and similar sounds. Future versions
of SoftOSS will even permit triggering this kind of special sounds from many different
applications at the same time.

System Requirements

Due to the high processing power requirements of software mixing SoftOSS is targeted to fast
machines only. With current (rather non-optimized) version it's possible to play 32 simultaneous
voicesusing 32 kHz sampling frequency using aP120 machine. However eventhisisbetter than the
sampling frequency that is possible at 32 voices using a popular wave table card (19.2 kHz). With
a100 MHz PowerPC processor (RS6000/A1X) it's possible to get almost 32 simultaneous voi ces at
44.1 kHz.

For the above reason at | east a P120 processor isrecommended. However one can use SoftOSSwith
any 486 class (or above) machine by decreasing the sampling frequency. OSS 3.8 permits selecting
a SoftOSS version which matches your CPU while configuring the device.

CPU power requirements of SoftOSS depends on concurrently playing notes (voices). Y ou can use
44.1 kHz sampling frequency with any 486 class CPU aslong as number of voicesremains|ow. For

85



example playing anod file using gnod should be possible with any machine.

Eveninlow-end 486 class machines, SofitOSS gives better MIDI playback qudity than the standard
FM synth.

Using SoftOSS with a CPU that istoo slow is not dangerous. Playback jus becomes distorted (it
jumps like a broken vinyl record) and the system becomes rather unresponsive. However, the
situation returns back to normal after playback is stopped/interrupted or the number of concurrently
playing notes decreases below the system dependent limit.

Atleast 16 MB of RAM isrequired (32 MB recommended). SoftOSS stores the instrument samples
in the system's (physical) RAM. Thismeans that there must be enough spare RAM on the system.
The current version of SoftOSS permits loading up to 8 MB of samples which means that using it
on machines with less than 16 MB RAM may not produce the desired performance. It is possible
to use SoftOSS on systems with less than 16 MB of RAM but care must be taken that too many
samples are not loaded. The final 3.8 version of SoftOSS will permit configuring the maximum
memory size whichmakes it safer to use in under-configured machines.

Limitations of SoftOSS

There are afew limitations in using SoftOSS. However, inmost cases they are not significant.

SoftOSSallocatesthefirstaudiodevice(/ dev/ dspO)foritself dwayswhen/ dev/ sequencer
or/ dev/ musi ¢ are open. This meansthat it is not possible to play audio at the same time with
MIDI on machines with just one soundcard. / dev/ dspO is still accessible when/ dev/ nusi ¢
and/ dev/ sequencer are not open.

SoftOSS uses CPU time which may make it useless in some applications. For example, it is not
recommended to use it for playing background music in games. Depending on the degree of
polyphony (number of simultaneous notes) it may slow down the gameseriously. Note tha thisis
not true with playing sound effects of games, which is awell-suited task for SoftOSS.

Most GUS compatible applications would be very confused if they detect two GUS compatible
devices on the same system. However, thisisnot aproblem since GUS (particularly GUS PnP with
8 MB RAM) does everything that SoftOSS does (i.e. you don't need to use SoftOSS if you have a
GUS).

Getting SoftOSS

SoftOSS isincluded in the standard OSS software (currently there is no extrafee).

86



Getting the Sound Patches
To use SoftOSSyou will need to usea GUS competible Linux application such asnpl ay or gnod.

You can get them from the OSS Applications page. With npl ay, you need to copy the
public-domain MIDIA instrument files.

Configuring SoftOSS

Configuring SoftOSS is very easy. Run soundconf and you will be presented with a menu that
looks something likethis:

Save changes and Exit

Cancel changes and Exit

Add new card/ device

Rermove a card/ device

Verify configuration

Excl ude I RQ and DMA numbers
Aut odet ect soundcards
Security setup

Manual configuration
Install license file

If you have not added any sound cards yet (they should be listed above this menu), you should
configureit fird by activating the"Add new card/device".

To add SoftOSS you just need to activate the "Add new card/device" function and select one of the
"4Front Tech. SoftOSS (for XXX)" entrieswhere the XXX matches (roughly) your CPU. If you can't
decide between two or more entries, select the highest one. If it doesn't work (playback jumps), you
can start soundconf again to remove this one and to select alower one.

After adding the SoftOSS engine and a16-bit soundcard, save the configuration and start OSS using
thesoundon command. Thenexecute"cat / dev/ sndst at " andverify that thereisat |east one
audio device and the SoftOSS synth is listed (as shown below).

Audi o devi ces:
0: Crystal audio controller (CS4236) (DUPLEX)

Synt h devi ces:
0: Soft 0SS

Now usethenpl ay program suppliedwithOSS(defaultis/usr/ | i b/ oss/ npl ay)toplay MIDI

files. Type"nmplay # mdifil e. m d" (where#isthesynth number under the Synth Devices
heading inthe/ dev/ sndst at output.

87



Future Plans

Thecurrent versionof SoftOSSisjust apreview release. It doesn't containall the featureswhich are
planned to be included in future versions. The following are some examples:

1. Support for sampl edistribution formatsused for distributing commercid instrument samples
and sound effects. SoundFont 2 will be the first format supported.

2. Support for streaming instruments. Streaming instrumentspermit playing of very largeaudio
files or computer genaated sounds together with ordinary (shorter) samples which fit
completely in memory. Using streaming instrumentswill require some form of support by
the application but most of it will be handled by OSSlib.

3. Support for 3D voice position and various special effects (thiswill requirefaster CPUsthan
currently available).

88



Advanced Programming Topics

I ntroduction

Thischapter describes some features of OSSthat are very useful or even necessary when used in the
right place. However, they don't automatically make your application better if used in situations
when they are not necessary. Some of the featuresto be presented bel ow don't work with all devices
(full duplex audio and direct DMA access, among others) or make your application very operating
system dependent (e.g. direct DMA access).

It is assumed that you have a full understanding of the features described in the Introduction and
Basic Audio sections of this guide. The features described here will work only if the guidelines
defined in the basic sections have been followed carefully.

Audio Internals

Anapplication program doesn't normally accesstheaudio hardwaredirectly. All databeing recorded
or played back isstored in akernel DM A buffer whilethedeviceisaccessingit. The application uses
normal r ead and wr i t e calls to transfer data between the kernel buffer and the buffer in the
application's data segment.

The audio driver usesan improved version of the so called double buffering method. In the basic
double buffering method there are two buffers. One of them is being accessed by thedevice while
the other is being read or written by the application. When the device finishes processing thefirst
buffer, it movesto the other one. Thisprocessisrepeated aslongasthe deviceisin use. Thismethod
gives the application time to do some processing at the same time as the device is running. This
makes it possible to record and play back without pauses.

The amount of time the application can spend on processing the buffer half depends on the buffer
size and the data rate. For example, when a program is recording audio using 8 kHz/8-bit/mono
sampling, the data rate is 8 kilobytes/second. If there is 2*4 kilobytes of buffer, it gives the
application morethan 0.5 seconds of timeto store the datato disk and to come back to read from the
device. If it spends more than 0.5 seconds, the buffer overruns and the driver has to discard some
data. 0.5 seconds is adequate time to store 4K of data to disk. However, things become more
complicated when the dataraeisincreased. For example, with audio CD quality thedatarateis 172
kilobytes/second and the availabletime isjust 23 milliseconds. Thisis about the same as the worst
case seek time of normd disk drives, which meansthat recording islikelyto fail. Better results can
be achieved by using larger buffers, but it increases latencies related to the buffering.

The method used by the audio driver of OSS could be called multi-buffering. In this method the
availablebuffer spaceisdivided into several equally sized blocks known asfragments. In thisway
it is possible to increase the available buffer size without increasing the latencies related to the
buffering. By default, the driver computes the fragment size so that latencies are about 0.5 seconds

89



(for output) and about 0.1 seconds (for input) using the current datarate. Thereisani oct | call for
adjusting the fragment size in the case that the application wants to use a different size.

Normal Operation When Writing to the Device

When the program calls write the first time after opening the device, the driver performs the
following steps:

1 Programsthe audio hardware to use the sampling parameters (speed, channelsand bits) the
program has selected.
2. Computes a suitable size for a buffer fragment (only if the program hasn't requested a

specific fragment size explicitly).
3. Starts filling the first buffer fragment with the data written by the application.

4. If enough data was writtento fill the first fragment completely, the device isstarted to play
it.

5. Finally, thedriver copiesrest of the datato the buffer. If all buffer fragments have been used,
the application is put to sleep until the first buffer gets played completely.

NOTE
At this point it is possible that the device was not started to play the data. This happens if the
application doesn't write enough datatofill one buffer fragment completdy. Thereisno reason to
worry about thisif the application isgoing to write moredatato the device as soon as it can, or if
it closesthe deviceimmediately. However (only) if thereisgoing to be apause of arbitrary length,
the application should call thei oct | SNDCTL_DSP_POST to activate the playback.

When the applicaion callswr i t e asecond time, the datais simply stored in the playback buffer
and the internal pointers of the driver are updated accordingly. If the application has attempted to
write more data than there is currently free space for in the buffer, it will be forced to wait until one
fragment getscompletely played by the device. Thisisthenormal situation with programsthat work
properly. They usually write dataat least dightly faster than the device playsit. Sooner or later they
get the buffer completely filled and the driver forces them to work at the same speed as the device.

A playback underrun situation occurswhen the applicationfailsto writemore data before thedevice
gets earlier data completely played. This kind of underrun occurs for one of three reasons.

1 The application needs too much time for processing the data. For example, the program is
being run on a slow CPU or there are many other applications using the processor. Also,
loading audio data from a floppy disk is likely to fail. It is usually very difficult if not
impossibleto find asolution to thiskind of underrunproblem. Possibly only rewriting parts

90



of the program in assembly language could help.

2. There are dight variations in the amount of CPU time the application gets. In this way an
application which normally works fast enough may randomly run out of time.

3. Theapplication attemptsto work too much inreal time. Havinglessdatain the output buffer
decreases delays in games and other real time applications. However, the application must
takecarethat it alwayswritesnew databefore earlier written samplesget completely played.

Theeffect of underrun dependson theaudio device. However, inalmost every case an audible defect
is caused in the playback signal. This may be just a short pause, a click or a repeated section of
signal. Repeated underruns may cause very strange effects. For example 100 underruns per second
sometimes causes asignal having afrequency of 100Hz (it could be very difficult to find the reason
which causes this effect).

Normal Operation When Reading from the Device

When the program calls read the first time after opening the device, the driver performs the
following steps:

1. Programsthe audio hardware to use the sampling parameters (speed, channelsand bits) the
program has selected.
2. Computes a suitable size for a buffer fragment (only if the program doesn't have requested

specific fragment size explicitly).

3. Activates the recording process on the device.

4, Putsthe application tosleep until thefirst fragment of data gets recorded by thedevice. Note
that the application will wait until the whole fragment gets recorded even if it attempted to
read just one byte.

5. After recording of thefirst fragment isready, it's contents, up to the amount requested by the
application, will be copied to the application's buffer variable.

6. Theread call returns after all bytes requested by the application havebeen read. If thereis
more data in the driver's buffer, it isleft there.

Subsequent reads work just like the first one except that the device doesn't need to be started again.
A recording overrun situation occurs if the device fills the recording buffer completely. If this
happens, the device is stopped and further samples being recorded will be discarded. Possible

reasonsfor recording overrunsarevery similar to the causes of playback underruns. A very common

91



situation where playback overrun may ocaur is recording of high speed audio directly to disk. In
Linux this doesn't work except with very fast disk drives (in other environments this should not be
aproblem).

Buffering - Improving Real-Time Perfor mance

Normally programs don't need to care about the buffering parameters of audio devices. However,
most of the features presented in this document have been designed to work with full fragments. For
this reason your program may work better if it reads and writes data one buffer fragment at time
(please note that thisis not normally required).

Deter mining Buffering Parameters

The driver computes the optimum fragment size automatically depending on sampling parameters
(speed, bits and number of channels) and amount of available memory. Application may ask the
buffer size by using the followingi oct | call:

int frag_size;
if (ioctl(audio_fd, SNDCTL _DSP_GETBLKSI ZE, &frag_size) == -1)
error();

NOTE
Thisi oct | call also computes the fragment size, in case it has not already been done. For thig
reason you should call it only after setting sampling parameters or setting fragment sizeexplicitly.

Thefragment sizein bytesisreturned inthef r ag_si ze argument. The application may usethis
value as the size when allocating (malloc) abuffer for audio data and the count when reading from
or writing to the device.

NOTE
Some old audio applications written for Linux check that the returned fragment size is between
arbitrary limits (this was necessary with version 0.1 of the driver). New applications should not
make thiskind of test.

The above call returns the static fragment size. There are two additiona calls which retum
information about the live situation.

audi o_buf info info;
i octl (audi o_fd, SNDCTL_DSP_GETI SPACE, & nfo);
ioctl (audio_fd, SNDCTL_DSP_GETOSPACE, &i nfo);

The above calls return information about output and input buffering, respectively. The

92



audi o_buf _i nf o record containsthe following fields:

I nt fragnents;

Number of full fragmentsthat can be read or written without blocking. Notethat thisfieldisreliae
only when the application reads/writes full fragments at time.

int fragstotal;

Total number of fragments allocated for buffering.
i nt fragsize;

Size of a fragment in bytes. This is the same value than returned by
i oct| ( SNDCTL_DSP_GETBLKSI ZE) .

i nt bytes;
Number of bytesthat can be read or written immediately without blocking.

These two calls, together with sel ect , can be used for writing asynchronous or non-blocking
applications. Itisimportant that SNDCTL_DSP_GETBLKSI ZE bethelasti oct | call madebefore
the first read or write. This call (aswell as read or write) will perform some optimizations which
require that the sampling parameters to be used are known. Changing the rate, format, or numbers
of channels may cause an error condition with some hardware devices.

[tisnot recommendedtousethe SNDCTL_DSP_GETISPACEand SNDCTL_DSP_GETOSPACE
functionsfor obtaining exact synchronization between audio and graphics or other external events
Thevaluesreturned by these callsaretuned for preventing blocking anf they may in some situations
behave unexpectedly. The new SNDCLT_DSP GETODELAY cal should be used for
synchronization purposes instead.

Selecting Buffering Parameters

In some cases it may be desirable to select the fragment size explicitly. For example, in real time
applications such as games, it is necessary to use relatively short fragments. Otherwise, delays
between events on the screen and their associated sound effects become too long. The OSS API
containsani oct | call for setting the fragment size and maximum number of fragments:

int arg = OXMMWSESSS;

if (ioctl(audio_fd, SNDCTL_DSP_SETFRAGVENT, &arg))
error();

93



NOTE
Thisi oct | cal must be used as early as possible. The optimum location isimmediately after
opening the device. It is not possible to change fragmenting parameters a second time without
closing and reopening the device. Also note that calling read, write or get _buf f er _i nf o the
abovethreei oct | callslock the buffering parameters which may not be changed after that.

Theargument to thiscall isan integer encoded as OXMMMMSSSS (in hex). The 16 least significant
bits determine the fragment size. The sizeis2"SSSS. For example SSSS=0008 gives fragment size
of 256 bytes (2°8). The minimum is 16 bytes (SSSS=4) and the maximum istotal _buffer size/2.
Some devices or processor architectures may require larger fragments - in this case the requested
fragment size is automatically increased.

The 16 most significant bits (MMMM) determine the maximum number of fragments. By default,
thedriver computesthisbased on available buffer space. The minimum valueis 2 and the maximum
depends on the situation. Set MMMM=0x7fff if you don't wart to limit the number of fragments.

NOTE

Setting the fragment size and/or number of fragments too small may have unexpected results (at
least on slow machines). UNIX isamultitasking environment where other processes may use CPU
time unexpectedly. The application must ensure that the sel ected fragmenting parameters provide
enough slack so that other concurrently running processes don't cause underruns. Each underrun
causes a click or pause to the output signal. With relatively short fragments this may cause a
whining sound whichisvery difficult toidentify. Using fragment sizes shorter than 256 bytesisnot
recommended as the default mode of application. Short fragments should only be used when
explicitly requested by the user.

The value returned by SNDCTL_DSP_SETFRAGMENT doesn’'t guarantee that the buffering
parametersrequested by the application will be used. The parametersto be used will be sel ected later
based on the sampling parameters sel ected and the capabilitiesand limitationsof the hardwarebeing
used. The only way to find out the actual values being used is by caling
SNDCTL_DSP_GETBLKSIZE.

Obtaining Buffering Information (pointers)

In some casesit is necessary for an application to know exactly how much data has been played or
recorded. The OSS API providestwoi oct | calsfor these purposes. Theinformation returned by
these callsis not precise in al cases. Some sound devices use internal buffering which make the
returned pointer valuevery imprecise. In addition, some operating systemsdon't allow obtaining the
value of the actual DMA pointer. Using these callsin applicationsislikely to make it non-portable
between operating systems and makes them incompatible with many popular devices (such as the
original GravisUItraSound). Applicationsshouldusei oct | ( SNDCTL_DSP_GETCAPS) tocheck
device capabilities before using these calls.

count _info info;

94



| (audi o_fd, SNDCTL_DSP_GCETI PTR, & nfo);
| (audi o_fd, SNDCTL_DSP_GETOPTR, &i nfo);

These callsreturn information about recording and playback pointers, respectively. The count_info
structure contans the following fields:

i nt bytes;

Number of bytes processed since opening the device. This field divided by the number of
bytes/sampl ecan be used asaprecisetimer. However underruns, overrunsand callsto somei oct |
cals (SNDCTL_DSP RESET, SNDCTL_DSP POST and SNDCTL_DSP_SYNC) decrease
precision of the value. Also, some operating systems don't permit reading value of the actual DMA
pointer so in these cases the value is truncated to previous fragment boundary. The value returned
will wrap unpredictably just beforeevery hour or playback or recording has elapsed. For thisreason,
these calls should not be used for audio and gragphics synchroni zation purposes (unessfor lessthan
one hour duration). Use the new SNDCTL_DSP_GETODELAY function instead.

i nt bl ocks;

Number of fragment transitions (hardware interrupts) processed since the previous call to this
I oct| (thevalueisresetto Oafter each cdl). Thisfield isvdid only when using direct accessto
audio buffer.

int ptr;

Thisfield is the byte offset of the current playback/recording position from the beginning of the
audio buffer. Thisfield haslittle value except when using direct access to an audio buffer.

Non-Blocking Reads and Writes

All audio read and write calls are non-blodking as long as there is enough space/data in the buffer
when the application makes the call. The application may use SNDCTL_DSP_GETOSPACE and
SNDCTL_DSP_GETI SPACE to check the device's status before making the call. The bytes field
tellshow many bytes can be read or written without blocking. It is highly recommended to read and
write full fragments every time when using select.

Using sel ect

The OSS driver supports standard sel ect system call. With audio devices, sel ect returnslin
the read or write descriptor bit mask when it is possible to read or write at least one byte without
blocking. The application should use SNDCTL_DSP_GETOSPACE and
SNDCTL_DSP_GETI SPACE to check the actual situation. Reading and writing full fragments at
atime isrecommended whensel ect isused.

95



Calingsel ect withtheaudi o_f d bit set in the readfds parameter has an important side effect.
Thiscall startsrecording immediately if it has not already started and recording isenabled. (Dueto
abug in OSS versions earlier than 3.6 this may not work with all cards.)

Some operating systems(such as Solaris) don't supportsel ect . Inthiscasethepol | system call
can be used instead.

Checking Device Capabilities

There are some features in the OSS API that don't work with all devices and/or operating systems.
For thisreason it isimportant to check that the features are avail able before trying to use them. The
result of using features not supported by the current hardware/operating system combination is
undefined.

It is possible to check the availability of certain features by using the SNDCTL_DSP_GETCAPS
Il oct| asbelow:

i nt caps;
ioctl (audi o_fd, SNDCTL_DSP_GETCAPS, &caps);

This call returns a bit mask defining the available features. The possible bits are:

DSP_CAP_REVI SI ON - the 8 least significant bits of the returned bit mask isthe version number
of thiscall. In the current version it is 0. Thisfield is reserved for future use.

DSP_CAP_DUPLEX - tellsif the device has full duplex capability. If thisbit is not set, the device
supports only half duplex (recording and playback is not possible at the same time).

DSP_CAP_REALTI ME - tellsif the device/operating system supports precise reporting of output
pointer position using SNDCTL_DSP_GETXPTR. Precise means that accuracy of the reported
playback pointer (time) is within a few samples. Without this capability the playback/recording
position is reported using precision of one fragment.

DSP_CAP_BATCH - indicates that the device has some kind of local storage for recording and/or
playback. For thisreasontheinformationreported by SNDCTL_DSP_GETXPTRisvery inaccurate.

DSP_CAP_COPROQOC - means that thereis some kind of programmable processor or DSP chip
associated with this device. Thishit is currently undefined and reserved for future use.

DSP_CAP_TRI GGER - tellsthat triggering of recording/playback is possible with this device.

DSP_CAP_MVIAP - tellsif itis possible to get direct accessto the hardware level recording and/or
playback buffer of the device.

96



Synchronization I ssues

In some applications it is necessary to synchronize audio playback/recording with screen updates,
MIDI playback, or some other external events. This section describes somewaysto implement this
kind of feature. When using the features described inthis section it is very important to access the
device by writing and reading full fragmentsat time. Using partial fragmentsis possible but it may
introduce problems which are very difficult to handle.

There are several different reasons for using synchronization:
1 The application should be able to work without blocking inaudio reads or writes.

2. There is a need to keep external eventsin sync with audio (or to keep audio in sync with
external events).

3. Audio playback and recording needs to be done in sync.

It isalso possible to have several of the above goals at the same time.

Avoiding Blocking in Audio Operations

Therecommended method for implementing non-blocking readsor writesistouses el ect . Further
instructions for using this method have been given above.

Synchronizing External Events With Audio

When there isaneed to get audio recording and playback to work in sync with screen updates, it is
easier to play the audio at its own speed and to synchronize screen updates with it. To do this, you
canusethe SNDCTL_DSP_GETxPTR callsto obtain the number of bytesthat have been processed
since opening the device. Thendivide the bytesfield returned by the call by the number of bytes per
sample (for example 4 in 16-bit stereo mode). To get the number of milliseconds since start, you
need to multiply the sample count by 1000 and to divide this by the sampling rate.

In thisway you can use normal UNIX alarm timersor select to control the interval between screen
updates while still being able to obtain exact audio time. Note that any kind of performance
problems (playback underruns and recording overruns) disturb audio timing and decrease it's
precision.

Recent versions of OSS support the new SNDCTL_DSP_GETODELAY function. It accepts a
parameter that points to an integer variable. The call returns the number of unplayed bytes in the
kernel buffer (the precision varies between a few samples and one fragment depending on the
hardware capabilities). The reurn value can be used to compute the time before the next sample
written to the device will be played. The advantage of this call us that the value will not overflow

97



or wrap after a peiod of time, unlike the bytes parameter returned by the
SNDCTL_DSP_GETOPTR cl.

This synchronization grategy is probably only useful when doing playback. When recording , use
approach described in the next section.

Synchronizing Audio With External Events

In games and some other real time applications there is a need to keep sound effects playing at the
sametime as game events. For example, the sound of an exposion should be played exactly at the
time (or dlightly later) as the flash on the screen.

The recommended method to be used in this case isto decrease thefragment size and maximum
number of fragments used with the device. Inmost casesthiskind of application work best with just
2 or 3 fragments. A suitable fragment size can be determined by dividing the byte rate of audio
playback by the number of frames/second to be displayed by the game. It is recommended to avoid
too tight timing since otherwise random performance problemsmay seriously degrade audio output.

Another way to synchronize audio playback with other eventsisto usedirect accessto audio device
buffer. However, this method is not recommended since it is not possible on all devices and
operating systems

When using the methods described above, there may be a need to start playback and/or recording
precisely at the right time. Thisis possible by using the trigger feature described below.

Synchronizing Recording and Playback Together

In full duplex applicationsit may be necessary to keep audio playback and recording synchronized
together. For example, it may be necessary to play back earlier recorded material at the same time
as recording new audio tracks. Note that this kind of application is possible only with devices
supporting full duplex operation or by using two separate audio devicestogether. In the second case
it is important that both devices support precisely the sampling rate to be used (otherwise
synchronizationisnot possible). Usethetrigger feature when you need thiskind of synchronization.

I mplementing Real-Time Effect Processors and other Oddities

Here the term "real-time" means an application which records audio data, performs some kind of
processing on it, and outputs itimmediately without any noticeable delay. Unfortunately, thiskind
of applications in general is not possible using UNIX-like multitasking operating systems and
general purposecomputer hardware. There is always some delay between recording a sample and
before it is available for processing by the application (the same is true with playback too). In
addition, the multitasking overhead (other simultaneously running processes) causes unexpected
pauses in operation of the application itself. Normaly these kinds of operations are done with

98



dedicated hardware and system software designed for this kind of use.

It is possible to decrease the delay between input and output by decreasng the fragment size. In
theory, the fragment size can be as short as 16 byteswith afast machine. However, in practiceitis
difficult to get fragment sizes shorter than 128 to 256 bytes to work. Using direct access to the
hardware levd audio buffer may provide better results in systems where this feature works.

If you still want to implement thiskind of application, you shoulduse short fragmentstogether with
select. The shortest fragment size that works depends on the situation and the only way to find it out
is making some experiments. And, of course, you should use adevice withfull duplex capability or
two separate devices together.

Usually read/write type real-time full duplex applications require that one fragment of silence data
iswritten to the output device immediately prior to writing the first recorded data to it. This extra
data causes some unwanted delay but without it the application (and operating system) has
practically no time to do it's own processing. It's important that this silent data is written after the
first read is complete, because otherwise playback may start too early.

It should be noted that in general it's not possible to use two or more sound cards in perfect
synchronization. Two devicesthat are not explicitly synchronized together will never work exactly
at the same sampling rate. For this reason, there will be some drift beween the two sound cards.
Eventually, after enough time has elapsed, thiswill cause problems (the time could be from seconds
to hours).

For the above reason, effect processing and multi-track recording may work only when using a
single full duplex capable soundcard or a proper multi channel device. There are also devices that
may be synchronized together using aspecial cable which solves this prablem.

A similar problem may happen whenworking with ISDN connections. Thel SDN datarateisexactly
8K bytes/sec but not all sound cards are able to work at exactly the 8 kHz rate.

Starting Audio Playback and/or Recording with Precise Timing

TheSNDCTL_DSP_SETTRI GGERI oct | call hasbeendesignedto beusedinapplicationswhich
require starting recording and/or playback with precise timing. Before you use thisi oct | , you
should check that the DSP_CAP_TRI GGER feature is supported by the device. Trying to use this
i oct | with adevice not supporting it will giveundefined results.

Thisi oct | accepts an integer parameter where two bitsare used to enable and disabl e playback,
recording or both. The PCM_ENABLE_| NPUT it controlsrecording and PCM_ENABLE_OUTPUT
controlsplayback. Theseits can be used together, provided that the device supportsfull duplex and
the device has been opened for O RDWR access. In other casesthe application should use only one
of these bits without reopening the device.

99



Thedriver maintainsthese bitsfor each audio devicewhich supportshisfeature. Initially, after open,
these bits are set to 1 which makes the device work normally.

Beforetheapplication can usethetriggeri oct | to start device operations, the bit tobe used should
be set to 0. To do thisyou can use the following code. It isimportant to note that this can be done
only immediately after opening the device (before writing to or reading from it). It is currently not
possibleto stop or restart adevicethat hasalready been activewithout first reopening the devicefile.

i nt enable_bits = ~PCM ENABLE _QUTPUT; /* Thi s di sabl es pl ayback */
i octl (audi ofd, SNDCTL_DSP_SETTRI GGER, &enabl e bits);

After the above call writesto the device, don't start the actual device operation. The application can
fill the audio buffer by outputting data using wr i t e. Write will return -1 with er r no set to
EAGAIN if the application triesto write when the buffer isfull. This permits prel oading the buffer
with output datainadvance. Calling read when PCM_ENABLE | NPUT isnot set will alwaysreturn
EAGAI N.

Toactually activatetheoperation,call SNDCTL_DSP_TRI GGERwiththeappropriatebitsset. This
will start the enabled operations immediately (provided that there is aready data in the output
buffer). It is also possible to leave one of the directions disabled while starting another one.

Starting Audio Recording or Playback in Sync with / dev/ sequencer or
/ dev/ musi c

In some casesit is necessary to synchronize playback of audio sequences with MIDI output (thisis
possiblewith recording too). To do thisyou need to suspend the device beforewriting to or reading
fromit. Thiscanbedoneby callingi oct | (audi of d, SNDCTL_DSP_SETSYNCRO, O0) .After
this, the device works just like when both the recording and the playback trigger bits (see above)
have been set to 0. The difference is that it is not possible to reactivate the device without using
featuresof / dev/ sequencer or/ dev/ nusi ¢ (SEQ_PLAYAUDI Oevent).

Full Duplex M ode

Full duplex means anaudio device hasthe ability to do input and output in pardlel.

Most audio devicesare half duplex, which meansthat they support both recording and playback but
can’'t do them simultaneously due to hardware level limitations (somedevices can't do recording at
al). Inthiscaseit isvery difficult toimplement applicaionswhich do bothrecording and playback.
It is recommended that the device is reopened when switching between recording and playback.

Itispossibletoget full duplex features by using two separate devices. In the context of OSSthisis
not called full dupex but simultaneous use of two devices.

Full duplex does not mean that the same device can be used twice. With the current OSS

100



implementation it is not possible to open adevicethat isaready open. Thisfeature can possibly be
implemented in future versions. In this situation you will need to use two separate devices.

Someapplicationsrequirefull duplex operation. It isimportant that such applicationsverify that full
duplex is possible (using DSP_CAP_DUPLEX) before trying to use the device. Otherwise, the
behaviour of the application will be unpredictable.

Applications should switch the full duplex feature on immediately after opening the device using
i octl (audi ofd, SNDCTL_DSP_SETDUPLEX, 0). This call switches the device to full
duplex mode and makes the driver prepared for full duplex access. This must be done before
checking the DSP_CAP_DUPL EX hit, since otherwise the driver may report that the device doesn't
support full duplex.

Using full duplex isgmplein theory. Theapplication just:

Opensthe device

Turns on full duplex

Sets the fragment size if necessary

Sets the number of channels, sample format, and sampling rate
Starts reading and writing the device

agrwdhpE

In practice, it is not that simple. The application should be able to handle both input and output
correctly without blocking onwritesand reads. Thisal most certainly meansthat the appli cation must
be implemented to use the synchronization methods described earlier.

Accessing the DM A Buffer Directly

In some rare cases it is possble to map audio device's hadware level buffer area into the address
gpace of an application. This method is very operating system dependent and is currently only
supported on the Linux platform. In general, this feature should be avoided if possible. It doesn’t
work with al hardware. Contact 4Front Technologies for assistance if there is no ather way to
implement your application.

The direct mapping method is possible only with devices that have a hardware level buffer which
is directly accessible from the host CPU's address space (for example, a DMA buffer or a shared
memory area).

The basic ideais simple. The application uses an operating system dependent method to map the
input or the output buffer into it'sown virtual address space. Inthe case of full duplex devices, there
aretwo separatebuffers (onefor input and one for output). After that, it triggersthe desired transfer
operation(s). Then, the buffer will be continuously accessed by the hardware until the device is
closed. The application can access thebuffer area(s) using pointers, but normal read and write calls
can no longer be used.

101



The buffer areais continuously scanned by the hardware. When the pointer reaches the end of the
buffer, the pointer ismoved back to the beginning. The application can read and write the datausing
the SNDCTL_DSP_GETxPTRcalls. The bytesfield tells how many bytesthe device has processed
since beginning. The ptr field gives an offset relative to the beginning of the buffer. This pointer
must be aligned to the nearest sample boundary before accessing the buffer using it. The pointer
returned by thiscall isnot absol utely precise dueto possibledelaysin executing thei oct | call and
possible FIFOsinsidethe hardware deviceitself. For thisreason, the application should assume that
the actual pointer isafew samples ahead of the returned value.

When using direct access, the blocks field returned by the SNDCTL_DSP_GETXPTR calls has
specia meaning. Thevalueretumedinthisfieldisthenumber of fragmentsthat have been processed
since the previous call to the samei oct | (the counter is cleared after the call).

Also, select worksin aspecial way with mapped access. Select returnsabit in thereadfds or writefds
parameter after each interrupt generated by the device. This happens when the pointer moves from
a buffer fragment to another. However, the application should check the actual pointer very
carefully. Itis possible that the select call returnsarelatively long time after theinterrupt. Itiseven
possible that another interrupt occurs before the application gets control again.

Note that the playback buffer is never cleaned by the driver. If the application stops updating the
buffer, its present contents will be played in aloop again and agan. Sufficient play-ahead is
recommended, since otherwise the device may play uninitialized (old) samples if there are any
performance problems.

No software based sample format conversions are performed by the driver. For this reason the
application must use a sample format that is directly supported by the driver.

102



Platfor m Specific | ssues

In general, all sound/audio programswritten for Linux, FreeBSD, SCO or UnixWare use the same
OSS AP (or itsolder version called VoxWare). The sound relaed functionality of these programs
is portable between operating systems where OSS is available. However, there are some common
portability problems.

Programs that use OS specific libraries or features are not portable or they require some changes
before they work.

Some programs include <soundcard.h> in a nonstandard way such as
<l i nux/ soundcard. h> or <machi ne/ soundcard. h>. You should instead use
<sys/ soundcard. h>,

Many 16-bit audio programs assume that they are running on a little-endian (x86) machine. This
causes problems (e.g. noise) in big-endian RISC machines such as PowerPC, SPARC or HP-PA.

103



Appendix A - References

The full MIDI definition is found in The Complete MIDI 1.0 Detailed Specification, published by
the MIDI Manufecturers Associaion. More informaion can be found a http://www.midi.org.

Information on installing and configuring OSS can be found inthe Open Sound System Installation
Guide.

Listed here are just afew web resources related to sound and multimedia:
http://www.opensound.com

The 4Front Technologies web site has alist of multimediaapplications that support OSS, as well
asa"killer app" featured each month.

http://www.linuxdoc.org
The Linux Documentation Project has created many HOWTO documents for Linux, including the

CD-ROM and Sound HOWTOs. It also includes several freely available books. Many of these are
installed on Linux systemsinthe/ usr/ doc directory.

http://sound.condor ow.net

This web site has a comprehensive and up to date list of Linux and UNIX MIDI and sound
applications.

http://www.freshmeat.net

Thissiteisacentral dearing house for Linux applications both alarge searchable database, aswell
as announcements of new rel eases.

Severa published books have some coverage of sound support, most notably Linux Multimedia

Guide published by O'Reilly & Associates. Usenet newsgroups, mailing lists, and local user groups
are also a good source of answers to problems related to sound support.

104



Appendix B - General MIDI patch map

Notethat, as per the MIDI spec, progran numberslisted here start at one but are zero based inMIDI
messages. Some MIDI applications may display the zero-based numbers.

Table12 - General MIDI Sound Set (all channels except 10)

# | Instrument # | Instrument # I nstrument

1 | Acoustic Grand Piano 44 | Contrabass 87 | Lead 7 - Fifths

2 | Bright Acoustic Piano 45 | Tremolo Strings 88 | Lead 8- BasstLead
3 | Electric Grand Piano 46 | Pizzicato Strings 89 | Pad1l-NewAge
4 | Honky-Tonk 47 | Orchestral Harp 90 | Pad2-Wam

5 | Rhodes Piano 48 | Timpani 91 | Pad 3- Polysynth
6 | Chorused Piano 49 | String Ensemble 1 92 | Pad 4 - Choir

7 | Harpsicord 50 | String Ensemble 2 93 | Pad5-Bow

8 | Clavinet 51 | Synth Strings 1 94 | Pad 6 - Metallic

9 | Celesta 52 | Synth Strings 2 95 | Pad7-Hao

10 | Glockenspiel 53 | Choir Aahs 96 | Pad 8- Sweep

11 | Music Box 54 | Voice Oohs 97 | FX1-Ran

12 | Vibraphone 55 | Synth Voice 98 | FX 2- Soundtrack
13 | Marimba 56 | Orchestra Hit 99 | FX 3- Crystal

14 | Xylophone 57 | Trumpet 100 | FX 4 - Atmosphere
15 | Tubular Bells 58 | Trombone 101 | FX 5 - Brightness
16 | Dulcimer 59 | Tuba 102 | FX 6 - Goblins
17 | Hammond Organ 60 | Muted Trumpet 103 | FX 7 - Echoes

18 | Percussive Organ 61 | French Horn 104 | FX 8 - Sci-fi

19 | Rock Organ 62 | Brass Section 105 | Sitar

20 | Church Organ 63 | SynthBrass 1 106 | Banjo

21 | Reed Organ 64 | Synth Brass?2 107 | Shamisen

22 | Accordion 65 | Soprano Sax 108 | Koto

105



23 | Harmonica 66 | Alto Sax 109 | Kaimba
24 | Tango Accordion 67 | Tenor Sax 110 | Bagpipe
25 | Acoustic Guitar (Nylon) | 68 | Baritone Sax 111 | Fiddle
26 | Acoustic Guitar (Steel) 69 | Oboe 112 | Shannai
27 | Electric Guitar (Jazz) 70 | English Horn 113 | Tinkle Bell
28 | Electric Guitar (Clean) 71 | Bassoon 114 | Agogo
29 | Electric Guitar (Muted) | 72 | Clarinet 115 | Steel Drum
30 | Overdriven Guitar 73 | Piccolo 116 | Wook Block
31 | Distortion Guitar 74 | Flute 117 | Taiko Drum
32 | Guitar Harmonics 75 | Recorder 118 | Melodic Tom
33 | Acoustic Bass 76 | Pan Flute 119 | Synth Drum
34 | Electric Bass (Finger) 77 | Blown Bottle 120 | Reverse Cymbal
35 | Electric Bass (Pick) 78 | Shakuhachi 121 | Guitar Fret Noise
36 | Fretless Bass 79 | Whistle 122 | Breath Noise
37 | SlapBass 1 80 | Ocarina 123 | Seashore
38 | Slap Bass 2 81 | Lead 1 - Square Wave | 124 | Bird Tweet
39 | SynthBass 1 82 | Lead 2 - Saw Tooth 125 | Telephone
40 | Synth Bass 2 83 | Lead 3 - Calliope 126 | Helicopter
41 | Violin 84 | Lead 4 - Chiflead 127 | Applause
42 | Viola 85 | Lead 5 - Charang 128 | Gunshot
43 | Cdlo 86 | Lead 6 - Voice

Table 13 - General MIDI Percussion Map (Channel 10)
# | Instrument # | Instrument # I nstrument
35 | Acoustic Bass Drum 51 | Ride Cymbal 1 67 | High Agogo
36 | BassDrum 1 52 | Chinese Cymbal 68 | Agogo Low
37 | Side Stick 53 | Ride Bell 69 | Cabasa

106




38 | Acoustic Snare 54 | Tambourine 70 | Maracas

39 | Hand Clap 55 | Splash Cymbal 71 | Short Whistle
40 | Electric Snare 56 | Cowbell 72 | Long Whistle
41 | Low Floor Tom 57 | Crash Cymbal 2 73 | Short Guiro

42 | Closed Hi Hat 58 | Vibrasap 74 | Long Guiro

43 | High Floor Tom 59 | Ride Cymbal 2 75 | Claves

44 | Pedal Hi Hat 60 | Hi Bongo 76 | Hi Wood Block
45 | Low Tom 61 | Low Bongo 77 Low Wood Block
46 | Open HiHat 62 | Mute Hi Conga 78 | Mute Cuica

47 | Low-Mid Tom 63 | Open High Conga 79 | Open Cuica

48 | Hi-Mid Tom 64 | Low Conga 80 | Mute Triangle
49 | Crash Cymbal 1 65 | High Timbale 81 | Open Triangle
50 | High Tom 66 | Low Timbale

107



Appendix C - FM Synthesizer Interface

This section describesthe / dev/ sequencer interface. This interface is now obsolete and has
been replaced by the/ dev/ nmusi ¢ device.

The/ dev/ sequencer deviceisusedfor producing musical type sounds. It canbe used to control
an FM sound chip (OPL-3 or OPL-4), awavetable sound card (e.g. GUS), MIDI devices, and other
compatibledevices (like the SoftOSS software wavetable device). While you can do similar things
withthe/ dev/ nusi c and/ dev/ m di devices, thisonegivesyou themost control for on-board
sound devices.

It isused in amannea vaguely similar to MIDI, you send events to the driver, the events are put in
agueue and executed inthe background. If you fill the queue, your processwill block until the queue
isnot full. Thelow "waer mark" queue threshold isconfigurable(the default is half the queue) and
settable viathe SNDCTL_SEQ THRESHOLDi oct | .

Y ou can avoid blocking by opening innon blocking mode, inwhich caseit will fail with return code
EAGAI N. If the queue empties, playing stopsuntil more events sent. The queueisquitelarge (1024
events).

There is a low-level interface, but you will normally make use of the macros defined in
<soundcar d. h>tomakeprogramming more convenient (andlesslikely tobreak infuture). Note
that the interface does not run on red-time! Y ou put timing information in the messages and the
sounds are played in the background.

The normal way in which the interface is used is the following:

1. Set buffer size with SEQ_DEFINEBUF()

2. Define file descriptor, segfd

3. Implement buffer writing routine called segbuf _dump (the example code shown below
should work fine, possibly with different error handling)

Listing 13 - Sample I mplementation of Buffer Writing Routine

voi d seqgbuf_dump ()
{

if (_seqbufptr)

if (write (seqfd, _seqbuf, _seqbufptr) == -1) {
perror ("write /dev/sequencer");
exit (-1);

_seqgbufptr = 0;

Open the device (in most cases for write only)
Load instrument patches (if internal sound card)
Set patches for each voice

ISP

108



7. Start timer (starts when device opened)

8. Play noteswith SEQ_START_NOTE

9. Timing info with SEQ DELTA_TIME or SEQ WAIT_TIME
10.  Stop noteswith SEQ STOP_NOTE

11. Use other eventsfor various effects

12.  When done call SEQ DUMPBUK() to flush the buffer

The event commands defined in the header file start with "SEQ ". The sequencer specifici oct |
functions start with the prefix "SNDCTL_SEQ ".

Patches for the sound devices vary by the type of device. Defined types are FM_PATCH,
OPL3 PATCH, WAVE_PATCH, GUS PATCH, and WAVEFRONT_PATCH. The are often
obtained from patch files. Thefiles/et ¢/ st d. 03 and/et ¢/ dr uns. 03 are FM patch filesfor
General MIDI. Thefiles/et c/ st d. sb and /et ¢/ dr uns. sb are SBI file format patches. Y ou
may also have .shi patch filesfor individual voices. Fileswith extension .pat are patch filesfor GUS
cards. Patchesarewrittento thedeviceusing themacrosSEQ WR_PATCH for SEQ WRPATCH2.

Don't assume a clock rae, you can chedk it with SNDCTL_SEQ RATE (it usually 100 ticks per
second).

Each voice can only play one sound at a time. If told to play a note any previous one stops.
Application needs to handle switching voices if you want polyphony. Like MIDI, channel 10 (9
zero-based) isthe percussion channel.

You can get the current time using SNDCTL_SEQ GETTIME i oct | . Given this you can
synchronize other things with the playing of the music. It is also possible receive events using
SEQ ECHO_BACK which will be synchronized with the playing.

Note that you can play / dev/ sequencer independently of / dev/ dsp. Some programs, e.g.
games, use/ dev/ dsp for sound effectsand/ dev/ sequencer for music

For an example of using the devices, read the sourcecode for applicaions such aspl aym di .

109



Glossary of Terms

A-law - alogarithmic coding scheme that uses companding to compress 12 bit samplesinto 8 bits.
Used primarily in European digital tdephone systems.

ADC - analogtodigital converter. A devicethat converts continuously variable anal og values (such
as sound pressure measured by a microphone) to discrete digital samples.

ADPCM - Adaptive Delta Pulse Code Modulation. A digital encoding scheme developed by the
Interactive Multimedia Association.

API - Application Programming Interface. The set of functions, constants, and variables provided
by a software application, library, or device driver.

Bitmask - a bit pattern used to isolate specific bits in a data representation. Often used in
conjunction with binary boolean operation such as AND and OR.

Codec - encoder/decoder; amethod of coding and decoding data from one format to another. May
be implemented in hardware or software.

DAC - digital to analog converter. A device that converts discrete digitd samplesto continuously
variable analog values (such as sound produced by a speaker).

DAT - Digital Audio Tape. A standard for storing digital information on magnetic tape.

DMA - Direct Memory Access. A hardwarefeaturewhereby datacan betransferred directly between
peripheral devices and main memory without the intervention of the CPU.

DSP - Digital Signal Processor. Strictly speaking refers to a processor chip designed for signal
processing applications, but often used informally to refer to the ADC and DA C devices onasound
card.

Decibel (dB) - aunit of measurement based on alogarithmic scale. Often used for measuring sound
intensity, since the human ear has alogarithmic response.

Digitize - to convert fromanalog to digital farm.

Dynamic Range - the difference between the weakest and loudest values that can be represented.
For aperfect analogto digital converter, the dynamic rangeisapproximately 6 dB timesthe numbers
of bits used for sampling.

Endian - The endian convention of a processor refers to the way in which multi-byte numbers are
stored in memory. Little-endian systems store the least significant bytes at lower memory address

110



which big-endian systems use the opposite convention.

FM Synthesis- Frequency Modulation synthesis; amethod of sound generation that useswaveform
generators and modulators in combination to produce sound.

Full Duplex - in the context of a sound card, refers to the ability to both record and play back
simultaneously.

GM - see General MIDI
GUS - Gravis UltraSound; a manufacturer of sound cards.

General MIDI - an extension to the MIDI standard which improves compatibility by defining a
minimum set of capabilities and standardized sound sets.

Half Duplex - in the context of asound card, refersto the limitation that a device can either record
or play back, but not both simultaneously.

IMA - Interactive Multimedia Association. A body which defines standards, such as the ADPCM
encoding format.

| SDN - Integrated Services Digital Network. A series of 1SO standardsfor voice and data services
over digital telecommunications networks.

loctl - asystem cdl used to control devices.

Lineln/Line Out - a standardized physical and electrical interface for connecting analog audio
devicestogether. Line level diffe's from microphone level and spesker level.

MIDI - Musica Instrument Digital Interface. A standardized protocol for conveying musical
performance information as electronic data.

MM A - MIDI Manufacturers Association. A body which publishestheMIDI standard and promotes
the use of MIDI and related technol ogies.

MOD - MODulefile; amusic fileformat that includes both sequencing information aswell assound
samples. First popularized on the Amiga computer platform.

MPEG - Moving Pictures Experts Group, a body which sets standardsfor digital audio and video
encoding. Also used informally to refer to the standards produced by the group.

MPU-401 - A de facto standard for aPC MIDI interface devel oped by Roland Corporation.

111



M SS - Microsoft Sound System; a (now obsolete) sound card.
Mic - microphone

Mixer - adevice used to control sound input and output volume levels and switching of the input
SOUrces.

Mu-law - ( -law); alogarithmic coding scheme that uses companding to compress 12 bit samples
into 8 bits. Used primarily in North American digital telephone systems.

OPL-2 - An FM synthesizer chip developed by Y amaha. It provided 2 operators and 9 voices.

OPL-3 - An FM synthesizer chip developed by Yamaha. It offered improved sound quality of the
OPL-2 chip by providing 4 operators and more voices.

OSS - Open Sound System, the multi-platform sound drivers sold by 4Front Technolog es.

Operator - awaveform oscillator on an FM synthesizer chip used to produce sound. More operators
allow more realistic sounds to be produced.

Overrun - an error condition in which incoming data cannot be read quickly enough, resulting in
data loss.

PAS - ProAudio Spectrum, a manufacture of sound cards.
Patch - In the context of sound generation, the device settingsfor asound generator which produce
a specific sound (i.e. acoustic piano). The settings are often permanently stored in files, known as

patch files.

PCM - Pulse Code Modulation. An encoding scheme for representing audio
in digital format.

SB - SoundBlaster. A series of sound cards developed by Creative Labs.

SBI - SoundBlaster Indrument. A fileformat developed by Creative Labsto define FM synthesizer
settings (patches).

SMPTE - Society of Motion Picture Technicians and Engineers. A standards organization. Often
used informally to refer to the time code standard developed by the SMPTE.

SampleRate- that rate at which digital samplesare measured or produced. Along with samplesize,
is one of the fundamental parameters which affects sound quality.

112



Sample Size - the size, usually expressed in bits of digitized sound samples Along with sample
rate, is one of the fundamental parameters which affects sound quality.

Sequencer - adevice (hardware or software) which controls (sequences) the playing of noteson a
music synthesizer.

SoftOSS - an optional feature of OSS which implements wavetable synthesis on nonwavetable
sound cards.

SysEx - System Exclusive Message. A class of MIDI system messages which are used to transfer
information in a manufacturer dependent format.

Underrun - an error condtion in which outgoing data is not available to be sent when required,
usually resulting in dataloss or noise.

Virtual Mixer - an optional feature of OSS which provides multiple virtual sound devices using
only one physical device.

Voice - an independent sound generator.

Wavetable Synthesis - a method of sound generation that uses digital sound samples stored in
dedicated memory.

113



............................................................................ 18
[Adev/audio. . . ..o 25
(Vv ASD .. e 25
(VAW . 25
D 87
Advanced Programming . ... ...ttt e 88
APPIICAIONS . .. 103
BOOKS ... 103
DU Er SIZe . . o 28
DU EITNG . . . e 93
CaPADIITIES . o 21
CD-ROM .o 9
000 <o 8,24
compatibility problems . ... ... . 9
COMPI  BITOIS . . ettt e e e e e e e e e e e 9
COMPIESSION . o . ottt et et et e e e e e e e e e e e e e e e e e e e e 24
Creative MUSIC FOMMEt ... ..o e e e e e e 41
default value . . ... 14
defallt ValUBS . . . .. 26
JElaYS ..o e 39
device Capabilities . .. ... o 95
JEVICE NaAMES . ..ottt e e e 13
JEVICES . ottt 9
digital audio . ... ..o 24
Digital Signal ProCESSOr . . . ..ottt 24
AireCt MAPPING . . oottt e e e e 100
DM A 88
DM A DU . 100
double BUFfEring . . . .. oo 88
DO P o 8,924
UMD MOAE . . . o 40
eNdian CoONVENLION . . . ...ttt e e et e e e 14, 26
BITON COUB . . .ottt e e e e 26
< 0] o0 o =P 27
BV NI 41
FIM MOdUIBEION . . e e e e 42
FM S NS ZEr . . .o 48
FOrK 14
TraMENt SIZE . o 91
fULL dUPLEX .o 25, 99
GlOSSaIY ..ot 109
QUIEIINES . . oo e e 13

114



GUS 85

half dUplEX . .. 25, 99
header file. . .o 9,27
HOW T OS . . oottt e e e e e e e 103
HZ o e 14
INStallation GUITE . . . . ..o e e e 8
INSEA NG . o 103
INtElligenNt MOde . .. ... 40
JOYSHICK o 9
LADEIING .o 21
[Ny . . oot 88
IMITAEIONS . . oot 85
LU e e e e 8
Linux MultimediaGuIde . ... e e e e 103
7= 01 13
MAINVOIUME . . . e e e e e e e e e 15
M Or deViCE NUMIDE . . .. ottt e et et 12
MICIOPNONE INPUL . . . .t 17
MDDl . e 9, 38, 56
MIDI channel VOICE MESSA0ES . . . . oo ottt e ettt e ettt 56
MIDIdefinition ... ... e 103
MDDl IlES . . . 60
MIDI PaCN M . . e ottt e 104
MIDI ProtOCOl . . . oot e 39
MIDI SYNtNESI ZEr . . . ot e 59
MIEX 0Pt ON . . o e 81
1011 C=: 8, 17
MIXEr ChaNNElS . . 17
MNEMONIC NAIMIES . . . o e ettt et e e e e e e e e e et et e e e e et et 18
111 21,33
MPU-0L . 40
U- BV . L 36
NON-BlOCKING . ... 94, 96
NOLE FTEOUENCIES . . . oottt e e e e e e e 58
NOte PItCh NUMIDEYS . . . . . e e e e et 58
NUMBENNG Of dEVICES . . .. ..o e e e e 11
Nyquist's Sampling Theorem . . ... .. o et 24
01 0 90
pParsiNg MIDI files . ... e 60
PO L 8
PlaybacK . ... . e 30
POIADIlItY . . o 13,102
QUENY TUNCHIONS . . . . ettt e e e e e e e e 20
FaW MUSICINEITaCE ... o e 41



FECONTING . .ottt 25,29
FECONTING SOUMCES . . . ot ittt ettt e e et e e e e et e e e e et 17, 22
SAMPlEe aPPlICaAIONS . . ... 41
SAMPIE TOIMELS . . . . o 30
SAMPIE SIZE . . . ottt e e 24
SAMPIING FAI . . . ot ottt e e e 24
OB L 50
S B . 9
S 0 [ 0 39
SO O SS .. .o 81, 83
Sound Blaster INSLrUMENt . . . . ..o e e 50
SOUNA QUEAIITY . ..ottt e 24
SOUNABIASIEr PrO .. oo 23
S (= o 21,33
SYMBDOIIC IINK . .o 14
SYMBOIIC IINKS .. 25, 28
SYNCHIONIZALION . .. . 96
YNBSS ZEr . .o 39
HIEOUL . . . 40
L1111 14
L0 0= 0 > = 16
L0 7 25
undocumented fEaLUNES . . .. ... i 15
UN DX e 8
UNNECESSANY fEaIUNES . . ..ot e e e e e 15
UNSUPPOItEd fOMMIES . . . o oot e e 31
virtual audio DeVICE . . ..o 82
VITUBl XY L o 81
virtual wavetable engine . ... ... . e 83
VOIUME LBVEIS . . o 21

116



