

Order Number
JT1001SR/D

 JT1001 Software Reference Manual
Control Registers

PRELIMINARY

Rev. 0
August 24, 1998
JATO TECHNOLOGIES
Confidential Information 1

JT1001 Software Reference Manual - Rev 0

JATO TECHNOLOGIES
Confidential Information

JT1001 Software Reference Manual - Rev 1.1.4
2

JT1001
Jato Technologies, Inc.
JT1001 Network Controller
Software Reference Manual

© 1998, Jato Technologies, Inc. All Rights Reserved.
JATO TECHNOLOGIES

iii
JT1001 Software Reference Manual - Rev. 0

TRADEMARKS JT1001, Propulsion, and CLIP are trademarks of Jato Technologies, Inc.

Magic Packet is a trademark of Advanced Micro Devices, Inc.

Any other trademarks or registered trademarks are the property of their
respective owners.

DISCLAIMER Information in this document is provided in connection with Jato Technologies,
Inc. products. No license, express or implied to any intellectual property rights,
is granted by this document. While every attempt has been made to assure that
the information presented in this document is accurate, Jato Technologies, Inc.
assumes no liability whatsoever relating to any possible inaccuracies. Jato
Technologies, Inc. assumes no liability whatsoever relating to fitness for a
particular purpose, merchantability, or infringement of any patent, copyright, or
other intellectual property right.

Jato Technologies, Inc. reserves the right to make changes to specifications and
product descriptions at any time, without notice.

HOW TO
REACH US

Jato Technologies, Inc.
505 E. Huntland Drive, Suite 550
Austin, TX 78752

Telephone (512) 407-2100

Fax (512) 452-5592

http://www.jatotech.com
info@jatotech.com

©1998, Jato Technologies, Inc., All Rights Reserved.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
iv

Table of Contents
TABLE OF CONTENTS . V

LIST OF FIGURES . IX

LIST OF TABLES . X

SECTION 1
OVERVIEW . 1-1

SECTION 2
TYPES OF REGISTERS . 2-1

SECTION 3
THEORY OF OPERATIONS . 3-1

3.1 INPUT/OUTPUT METHODS . 3-1
3.1.1 Programmed Input/Output . 3-1
3.1.2 Packet Descriptor List . 3-2
3.1.3 Packet Propulsion Method (Packet Descriptor Command) 3-5

3.2 INITIALIZATION. 3-10
3.2.1 Reset . 3-10
3.2.2 Physical Layer Configuration and Status . 3-11
3.2.3 PDC Buffer Allocation. 3-12
3.2.4 PDL Buffer Allocation . 3-12
3.2.5 System Initialization Event Sequence . 3-13
3.2.6 Initialization Algorithm . 3-13

3.3 TRANSMIT PACKET PROCESSING . 3-17
3.3.1 Transmit Packet Padding . 3-17
3.3.2 VLAN Tag Header Insertion . 3-17
3.3.3 CRC Generation. 3-17
3.3.4 Transmit Completion Status . 3-18
3.3.5 Transmit Statistics . 3-18
3.3.6 Simultaneous Use of PDL, PDC, and PIO I/O Methods. 3-18
3.3.7 Programmed Input/Output Method of Transmission 3-19
3.3.8 Packet Descriptor List Method of Transmission . 3-21
3.3.9 Packet Propulsion Mode Method of Transmission 3-23

3.4 RECEIVE PACKET PROCESSING . 3-26
3.4.1 Packet Reception Filters . 3-26
3.4.2 Packet Receive Status . 3-27
3.4.3 Receive Statistics . 3-27
3.4.4 Large Packet Reception . 3-27
3.4.5 Simultaneous Use of PDL, PDC, and PIO I/O Methods. 3-27

3.5 PROGRAMMED INPUT/OUTPUT (PIO) METHOD OF RECEPTION. 3-28

3.6 PACKET DESCRIPTOR LIST METHOD OF RECEPTION 3-29
3.6.1 Packet Propulsion Mode Method of Reception . 3-32

Packet Propulsion Mode Receive Algorithm . 3-32

3.7 INTERRUPT PROCESSING . 3-35
3.7.1 Event Status Register. 3-35
3.7.2 Interrupt Mask Register . 3-35

3.8 INTERRUPT HANDLER . 3-36

3.9 VLAN SUPPORT . 3-38

3.10 TCP/IP CHECKSUM SUPPORT . 3-40
3.10.1 EEPROM Support . 3-41

3.11 EXPANSION ROM SUPPORT . 3-42
3.11.1 Magic Packet Wake Up . 3-42

3.12 PCI POWER MANAGEMENT . 3-43

3.13 PRE-FETCHING . 3-44

SECTION 4
PCI CONFIGURATION REGISTERS . 4-1

SECTION 5
COMMAND AND STATUS REGISTERS . 5-1

CSR 00 Mode Register – 1 . 5-3
CSR 01 Mode Register – 2 . 5-8
CSR 02 Transmit PDC Buffer Address Table Index 5-10
CSR 03 Product Identification Register . 5-11
CSR 04 Transmit PDC Buffer Address LSD . 5-12
CSR 05 Transmit PDC Buffer Address MSD . 5-12
CSR 06 Receive PDC Buffer Address Table Index . 5-13
CSR 07 Reserved . 5-14
CSR08 Receive PDC Buffer Address LSD . 5-14
CSR 09 Receive PDC Buffer Address MSD . 5-15
CSR 10 EEPROM Register . 5-15
CSR 11 Chip Status Register. 5-18
CSR12 Transmit PDL Address Register LSD. 5-19
CSR 13 Transmit PDL Address Register MSD . 5-22
CSR 14 Receive PDL Address Register LSD . 5-22
CSR 15 Receive PDL Address Register MSD. 5-27
CSR16 Transmit PDC Register. 5-27
CSR 17 Receive PDC Register . 5-29
CSR 18 Interrupt Period Register Reserved . 5-33
CSR 19 TX FIFO Packet Count Register. 5-34
CSR 20 TX FIFO Low Watermark Register . 5-34
CSR 21 TX FIFO DWORDs Free Register . 5-35
CSR 22 TX FIFO Write Register . 5-35
CSR 23 Reserved . 5-37
CSR 24 RX FIFO Read Register . 5-37
CSR 25 Reserved . 5-40
CSR 24 RX FIFO DWORD Count Register . 5-40
CSR 27 RX FIFO High Watermark Register . 5-41
CSR 28 RX FIFO Packet Count Register . 5-41
CSR 29 Command Register. 5-41
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
vi

CSR 30 Interrupt Mask Register . 5-43
CSR 31 Reserved . 5-45
CSR 32 Event Status Register. 5-45
CSR 33 Reserved . 5-48
CSR 34 Multicast Hash Table Register LSD . 5-48
CSR 35 Multicast Hash Table Register MSD. 5-48
CSR 36 LED 0 Configuration Register. 5-49
CSR 37 LED 1 Configuration Register. 5-50
CSR 38 LED 2 Configuration Register. 5-50
CSR 39 LED 3 Configuration Register. 5-50
CSR 40 Reserved . 5-51
CSR 41 EEPROM Data Register . 5-51
CSR 42 LAN Physical Address Register LSD . 5-51
CSR 43 LAN Physical Address Register MSW . 5-53
CSR 44 G/MII PHY Access Register . 5-53
CSR 45 G/MII Mode Register . 5-54
CSR 46 Statistic Index Register. 5-55
CSR 47 Statistic Value Register . 5-57
CSR 48 VLAN Tag Control Information Table . 5-58
CSR 49 VLAN Tag Protocol ID Register . 5-59
CSR 50 Reserved . 5-59
CSR 51 Command Status Register . 5-60
CSR 52 Flow Control Watermark Register . 5-61
CSR 53 Reserved . 5-61
CSR 54 Reserved . 5-62
CSR 55 Reserved . 5-62
CSR 56 Reserved . 5-62
CSR 57 Reserved . 5-63
CSR 58 Timer 0 Count Register . 5-63
CSR 59 Timer 0 Interrupt Trigger Register . 5-64
CSR 60 Timer 1 Count Register . 5-64
CSR 61 Timer 1 Interrupt Trigger Register . 5-65
CSR 62 Debug Command Register . 5-65
CSR 63 Debug Data Register . 5-66

SECTION 6
REGISTER PLACEMENT . 6-1

SECTION 7
EEPROM MAP . 7-1

SECTION 8
GLOSSARY . 8-1
JATO TECHNOLOGIES

vii
JT1001 Software Reference Manual - Rev. 0

JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
viii

JATO TECHNOLOGIES

ix
JT1001 Software Reference Manual - Rev. 0

List of Figures

Figure 1-1. JT1001 Block Diagram. 1-2
Figure 3-1. PIO Data Transfer Process . 3-1
Figure 3-2. Transmit Packet Descriptor List . 3-2
Figure 3-3. PDL Data Transfer Process . 3-3
Figure 3-4. PDC Data Transfer Process. 3-8
Figure 3-5. VLAN Header Format. 3-39
Figure 4-1. PCI Configuration Space Register Map . 4-1
Figure 5-1. PDL Transmit Header Format . 5-20
Figure 5-2. PDL Pre-Receive Header Format . 5-23
Figure 5-3. PDL Post-Receive Header Format. 5-24
Figure 5-4. PDC Transmit Header and Data Format . 5-28
Figure 5-5. PDC Receive Header and Data Format . 5-30
Figure 5-6. PDC Null Header Format . 5-33
Figure 5-7. PIO Transmit Header and Data Format . 5-36
Figure 5-8. PIO Receive Header and Data Format . 5-38
Figure 7-1. EEPROM Map . 7-1

JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
x

List of Tables

Table 3-1. Initialization Pseudo-Code . 3-13
Table 3-2. PIO Transmit Pseudo-Code . 3-19
Table 3-3. PDL Transmit Pseudo-Code . 3-21
Table 3-4. PDC Transmit Pseudo-Code . 3-23
Table 3-5. PIO Receive Pseudo-Code . 3-28
Table 3-6. PDL Receive Pseudo-Code . 3-29
Table 3-7. PDC Receive Pseudo-Code. 3-32
Table 3-8. Interrupt Handler Pseudo-Code . 3-36
Table 5-1. Statistic Index Table . 5-55

Section 1
Overview

The JT1001 controller is designed to provide an optimal combination of cost
and system-level performance, both at the file server and at the workstation.
The device achieves this optimal combination by exploiting attributes of the PCI
bus, by combining large amounts of RAM on-board the device, by leveraging
behavioral characteristics of PC system software, and by incorporating a flexible
system interface that adapts readily to the shifts in the performance balance
between the microprocessor and the other system components. The details of
this design are described in this manual and include algorithm and interface
descriptions. However, the large scale features of the device can be summarized
as follows:

• Deep on-board receive (RX) FIFO (64K).

• Deep on-board transmit (TX) FIFO (32K).

• 64-bit address and data paths.

• Supports three data transfer methods:

— Programmed I/O (PIO).

— Packet descriptor list (PDL).

— Packet Propulsion (PDC) I/O method.

• 10/100/1000 Mbps operation.

• Full-duplex and half-duplex operation.

• Supports auto-negotiation of duplex mode and link speed.

• Supports MII, G/MII, and PCS PHY connections.

• PCI power management support.

• Magic Packet data sequence wake up.

• VLAN support.

• TCP/IP checksum generation/validation.

• Expansion ROM for remote IPL and BIOS extensions.

• Selectable receive/transmit prioritization.

• Support for big/little endian byte ordering.

• Promiscuous receive mode.

• Independent enable/disable of transmitter and receiver.

• Loopback at MAC and PHY.

• High-level register interface to EEPROM (read/write).

• Flexible PCI register interface to G/MII registers.
JATO TECHNOLOGIES

1-1
JT1001 Software Reference Manual - Rev. 0

Overview

• Receive and transmit completion interrupts can be selected on a per-packet
basis.

• Programmable high/low watermark interrupts for receive and transmit data
FIFOs.

• Error counters for dropped packets, errored packets, late collisions, etc.

• Support for up to four programmable LEDs.

Figure 1-1. JT1001 Block Diagram

JT1001 Controller

LED
Interface

Serial
EEPROM
Interface

Boot ROM
Interface

Control
Registers

TCPIP
Checksum
Generator

RX FIFO

PC
I B

us
 In

te
rfa

ce

Bus Master
Controller

Descriptor
RAM

IEEE
I149.1
JTAG
Port

TCPIP
Checksum
Validator

MAC

MAC
Control

VLAN

Physical
Layer

Interface

GMII
or

PCS

Ph
ys

ic
al

 L
ay

er
 D

ev
ic

e

Physical Interface

System Interface

MAC

Data Buffers

TX FIFO

8

8

8

88 64

6464

PC
I B

us
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
1-2

Section 2
Types of Registers

Several types of registers are used in the JT1001. They are:

• Control and Status Registers.

— Control and Status Registers (CSRs) are accessible by HOST
software. CSRs are used to control the operational behavior of the
JT1001 controller and ascertain its status. In particular, CSRs can
be read/write, read only, write only, or a combination of all three. The
read/write attribute of a particular bit or sequence of bits in a CSR
is individually set. That is to say, a CSR can be entirely dedicated
to one function (as is the case with the Transmit PDL Address
Register), or can be subdivided into one or more bit fields (like Mode
Register – 1), each having its own read/write behavior.

— Frequently accessed bit fields in CSRs are implemented as set/reset
registers. This type of register is subdivided into one or more mask
bits and one or more set/reset control bits. The mask bits determine
whether a particular bit will be affected by a given write operation.
For example, a mask value of 1001b will allow a write to the least
significant bit (LSB) and most significant bit (MSB) of a 4-bit field
while preventing writes to the middle bits. If the control bit is set to
1, then the MSB and LSB will have 1s written to them. If the control
bit is set to 0, then the MSB and LSB will have 0s written. Again, in
both cases the contents of the middle bits remain unchanged. When
set/reset registers are read, the set/reset bits are ignored (actually,
they are read as 0s) and those bit fields that have an R/W attribute
will return their current value. Mode Register – 1 is an example of
a set/reset CSR.

— Some CSR bit fields are self-clearing. When set by HOST software,
self-clearing bit fields remain set until some activity completes, at
which point the bit field is automatically reset by the JT1001.
Self-clearing bits can be polled by HOST software to determine
when the activity has completed. The SWRE bit in Mode
Register – 1 is an example of an auto-reset bit (field).

— Some CSR registers are automatically cleared when read. Typically,
this type of behavior is used in counter registers. Once the count is
retrieved, the register resets and counting begins again at some
predetermined value, usually 0. The Event Status Register is an
example of a clear when read register.

— CSRs are either 32 or 64 bits wide and can be accessed using either
I/O or memory cycles.
JATO TECHNOLOGIES

2-1
JT1001 Software Reference Manual - Rev. 0

Types of Registers

— The 64-bit registers can be accessed 32 bits at a time. However,
64-bit registers that effect an action when read or written must be
accessed most significant DWORD (MSD) first. For example, to
pass the address of a transmit PDL to the JT1001 controller, the
MSD is written first, followed by the least significant DWORD (LSD).
When the JT1001 controller detects the write to the LSD of the
Transmit PDL Address Register, it will assume that all 64 bits have
been written and that the operation can begin.

— In cases where extensive bit manipulation of CSRs is expected, the
most heavily used bits are kept in the low order 16 bits of the register.
This is done to accommodate the byte and word oriented operations
of x86 microprocessors.

— The CSRs are defined in Section 5.

• PCI Configuration Space Registers.

— The JT1001 configuration is achieved by partially using PCI
configuration space registers and partially using CSRs.
Configuration aspects pertaining to system resources such as
interrupts and address space are handled in the standard manner
using PCI configuration registers. Configuration of the operational
characteristics of the JT1001; e.g., wire speed, reception of
multicast frames, etc., is done by programming specific values into
CSRs.

— The PCI configuration registers adhere to the PCI v2.1 Specification
and the PCI Power Management Specification. See Section 5 for a
map of the configuration registers.

• All of the PCI configuration registers and the CSR registers can be read
or written from the PCI bus, EEPROM, or internal blocks.

• As previously noted, the device registers that are visible on the PCI bus
can either be I/O mapped or memory mapped in PCI address space.

— The registers are all aligned on DWORD boundaries.

— The registers support 8-, 16-, 32-, and 64-bit accesses. Note that
at this time, the PCI bus only supports 32-bit I/O. All 64-bit accesses
are for memory cycles only. Although 64-bit I/O is not currently
supported, it is expected that it will be defined in the standard and
supported by CPUs within the lifetime of the JT1001.

• Data written to reserved bit fields will be ignored. A potential consequence
of this approach is that certain types of HOST software defects may go
undetected until the reserved bits are utilized in future revisions of the
device.

• The JT1001 CSRs are organized to accommodate high-performance
drivers. The registers have been organized to minimize the bit
manipulations required for mainstream packet processing.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
2-2

Section 3
Theory of Operations

3.1 INPUT/OUTPUT METHODS

Three I/O methods are defined for the JT1001: programmed input/output (PIO),
packet descriptor list (PDL), and packet Propulsion (PDC) I/O method. Of these
three methods, PIO and PDL are extensively used in conventional ethernet
adapters and are described briefly below. The third technique, packet Propulsion
I/O method, is Jato Technologies’ unique and proprietary data transfer method
designed to highly optimize packet processing for increased I/O bus utilization
and data throughput.

3.1.1 Programmed Input/Output
The PIO method implemented in the JT1001 is a traditional I/O method where
the CPU moves data into and out of the device. CPU read and write operations
(IN and OUT instructions in x86 parlance) are performed to device registers to
either place data to be transmitted into the transmit data buffer (TX FIFO) or to
extract data from the receive data buffer (RX FIFO). Figure 3-1 depicts the
process as it is applied when transmitting a packet. Step (1) is to ascertain
whether the packet to be transmitted fits into the TX FIFO (in the diagram, it is
assumed that the packet fits). Step (2) is to transfer the data to the device. The
CPU performs this task by repeatedly writing DWORDs of packet data to the
TX FIFO Write Register until all packet data is exhausted. Step (3) is to inform
the device that a complete packet has been placed into the TX FIFO. Upon
receiving this indication, the device will initiate transmission of the packet at the
next available opportunity.

Figure 3-1. PIO Data Transfer Process

FIFO Control Logic

FIFO
TX FIFO Write Register

TX Command Register

TX FIFO Free Count Register

DeviceSoftware

Determine
Available Space

Instruct Device to
Transmit Packet

Write Packet
Data to Device

{1}

{2}

{3}
JATO TECHNOLOGIES

3-1
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
3.1.2 Packet Descriptor List
The PDL technique is also commonly referred to as scatter-gather bus master.
The PDL is a data structure that is comprised of a header followed by a number
of packet fragment descriptors. The header specifies the total length of the
packet (the sum of the lengths of the fragments), the number of fragments, and
option flags indicating any special processing requirements for the packet. The
fragment descriptors specify the physical memory addresses of the buffer
fragments and their individual lengths. The data structure is arranged as follows
(bit 0 is the LSB):

Figure 3-2. Transmit Packet Descriptor List

For clarity, the field names are briefly defined below:

PKLE — Packet Length. The sum of the lengths of the individual fragments.

FGCN — Fragment Count. The count of fragments defined within the PDL.

TXOPTIONS — Per Packet Transmission Options.

DMDNINRQ — Request for Interrupt Upon Completion of the Packet Transfer
to the JT1001 controller.

FGAD LSD n — Fragment n Address, Least Significant DWORD.

FGAD MSD n — Fragment n Address, Most Significant DWORD.

3
1

3
0

2
1

2
0

1
6

1
5

0
0

D
M
D
N
I
N
R
Q

T
X
O
P
T
I
O
N
S

F
G
C
N

P
K
L
E

RESRVD

FGAD LSD 0

FGAD MSD 0

RESRVD FGLE 0

RESRVD

FGAD LSD 1

FGAD MSD 1

RESRVD FGLE 1

RESRVD

•
•
•

FGAD LSD 30

FGAD MSD 30

RESRVD FGLE 30

RESRVD
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-2

Theory of Operations
FGLE n — Fragment n Length.

Details pertaining to this data structure are presented in the section describing
the Transmit PDL Address Register’s LSD. The PDL for receive is virtually
identical. It is described in detail in the Receive PDL Address Register MSD/LSD
sections.

Figure 3-3 depicts the interaction between the JT1001 and its supporting system
software when performing PDL DMA transfers. Although the diagram is
presented from the vantage point of packet transmission, packet reception
behaves in almost the same fashion. The differences will be highlighted at the
end of the sub-section.

Figure 3-3. PDL Data Transfer Process

Address
of PDL

Data
Buffer

n

Data
Buffer

1

Data
Buffer

0

Header

VFrag 0

VFrag 1

•
•
•

VFrag n

Header

Frag 0

Frag 1

•
•
•

Frag n

Transmit PDL
Address MSD/
LSD Register

Transmit PDC
Register

Other Device
Registers
(CSRs)

Transmit PDC
Bfr Adrs Table

Index Reg

TX PDC Bfr Adrs
Tbl MSD/LSD

Reg

PCI
Interface

PDL
{2}

{6}

Physical Addrs.

{1}
Packet Descriptor

•
•
•

Virtual Addresses

{8}

{3}

Bus Master
Controller

{9}

Transmit Data FIFO
To MAC

To Command
Execution

Queue
Unused if
Next PDL

Can Not Be
Fully

Expanded
Into Space

PDL (Cmd 2)

PDC (Cmd 1)

PDC (Cmd 0)

Address 0

Address 1

Address 2

Address n

•
•
•

{7}

{4}

TX Cmd
FIFO

1 = PDC
0 = PLD

Cmd 0

Cmd 1

Cmd 2

Cmd n

•
•
•

1

0

1

x

•
•
•

TX PDC
Buffer

Table

Software Device

Addr.
JATO TECHNOLOGIES

3-3
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
In Figure 3-3, the sequence for packet transmission is as follows:

1. An indication is received by the JT1001 system software that a packet
is to be transmitted. The indication is accompanied by some form of
packet descriptor data structure usually containing multiple packet
buffer fragments that are to be sent in the sequence that they are found
in the descriptor.

2. The addresses of the packet fragments found in the packet descriptor
can be virtual or physical addresses. It is typical for them to be the
virtual addresses of buffers constructed by a protocol stack. In this
case, virtual addresses must be converted to physical addresses. This
operation usually involves a call into the HOST operating system. Once
the physical addresses for the packet are known, they are stored in the
fragment address fields of the PDL’s fragment descriptors.

3. After completely formatting the PDL; i.e., once it fully describes the
packet to be transmitted, it can be passed to the JT1001 controller for
processing. To do this, the starting physical address of the PDL in
HOST memory is written to the Transmit PDL Address MSD
Register/LSD Register. This action has the effect of placing the PDL’s
address into the transmit command FIFO.

4. When one or more commands are present in the transmit command
FIFO, the bus master JT1001 controller (BMC) is prompted to examine
the FIFO and extract the first available command. In our example, the
queue is assumed to be empty prior to the transmit request and thus the
PDL is acted upon at the first available opportunity.

5. When the BMC looks at the command FIFO, it determines that the
command is a PDL. Consequently, the BMC issues a request to the PCI
block for the transfer of the PDL data structure from HOST memory to
the Command Execution Queue (i.e., the header field and the fragment
fields).

6. The PCI block responds to the request by effecting the necessary
cycles on the bus to transfer the PDL into the Command Execution
Queue.

7. Once the PDL is at the front of the Command Execution Queue, the
BMC begins to “execute” it. It does so by interpreting the header, setting
up its counters, pointers, etc., and then issuing commands to the PCI
block to effect data transfers from HOST memory to the transmit data
FIFO. For every fragment in the PDL, the BMC issues one data transfer
command to the PCI block.

8. The PCI block transfers each packet fragment, one at a time to the
transmit data FIFO.

9. Once the packet is completely transferred to the data FIFO, the BMC
signals the data FIFO that a complete packet has been transferred. The
FIFO control logic then updates its pointers and signals the MAC that a
packet is ready for transmission.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-4

Theory of Operations
The process for receiving a frame differs from the process described above in
two respects:

1. The direction of the data flow is reversed.

2. The receive process is driven by the availability of incoming data and
the availability of PDLs in the receive command FIFO. In other words,
if a packet arrives and there is no PDL or PDC in the receive command
FIFO, then the packet will sit in the receive data FIFO until a PDL or
PDC is placed into the receive command FIFO.

3.1.3 Packet Propulsion Method (Packet Descriptor Command)
The PDC method for moving data is a specialization of the traditional PDL
technique. As previously noted, the principle notion of PDL is that a bus master
device is instructed to obtain a command block from HOST system memory. At
a minimum, the command block contains a list of the physical addresses of the
packet fragment buffers in HOST memory that are to be copied to the device,
the count of packet buffer fragments, and the overall length of the data contained
in the fragments (the sum of the lengths of the individual fragments).

The device parses the command block, extracting the address of each block of
memory (fragment) to process, and effects a transfer of the said fragment from
HOST memory to the device. The device repeats this process for each fragment
listed in the PDL until all of the data described by the command is copied to the
JT1001 controller for transmission (the direction of the data flow is reversed for
receive).

Contemplating the nature of the most important modern operating systems,
several key points become apparent:

• They support and practically require virtual memory.

• Devices that initiate data movement transactions across peripheral
interconnect busses can not use virtual memory addresses to effect the
transfers.

• In terms of performance, the conversion of virtual addresses to physical
addresses is an expensive one.

These points are significant primarily because of the sequence of events they
impose on bus master devices. Again considering the traditional PDL technique,
when data is passed to a bus master device, the corresponding device driver
must first perform a virtual to physical address conversion for each of the buffer
fragments in the data transfer operation. Moreover, a typical buffer passed to
the device is broken up into several buffer fragments. That is, the data to be
transferred to the device is segmented into several pieces (typically three or four
pieces). These facts result in a situation whereby the cost of converting a virtual
address to a physical one can be repeated several times for each block of data
that is to be transferred to the device. Given that the conversions are expensive,
it is desirable to avoid them.
JATO TECHNOLOGIES

3-5
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
One method for avoiding the virtual-to-physical address translations is for the
device driver to allocate blocks of locked memory during device initialization.
The address conversion for these blocks can be performed once — at the point
where the memory is allocated — and the physical address can be stored away;
e.g., in a queue. Each time that a request to transfer data to the device is received
from the upper layers, the device driver could very quickly remove the next
available memory block from the queue, copy the data provided by the upper
layer into the memory block, format a PDL, and then pass the PDL to the JT1001
controller. This method has the following advantages:

• Virtual to physical address translation is avoided.

• The formatting of the PDL is simplified.

• The amount of data to be transferred to the JT1001 controller in the PDL
itself is reduced.

This method for processing DMAs is frequently referred to as “double copy” or
“double buffer” DMA. Several observations can be made regarding this
technique:

• The fragment count is always 1.

• The length value in the PDL header is the same as the length value of the
first fragment.

• The physical address placed into the first fragment address field in the PDL
is one of n possible physical addresses of pre-allocated locked buffers.
Usually, n is 16, 32, 64, or some other suitably small integer (i.e., typically
n <= 128, although it appears that future drivers may begin using values
for n that are more in the range of 128 <= n <= 1024).

Once it is clear that some of the fields in the PDL will always have either the
same value, or one value out of a small set of values, an expedited form of
double buffering becomes possible. This expedited double buffer technique is
called Propulsion technology, or PDC.

The principal ideas behind Propulsion technology are:

• No command block (i.e., PDL) is formatted in HOST memory. Data transfer
commands are communicated to the JT1001 controller by passing a packet
descriptor command. A PDC is a 32-bit value, subdivided into fields, that
completely describes the data transfer operation. A PDC fits entirely within
a device register and can be constructed entirely within a CPU register.

• Only one fragment (data buffer) per data transfer operation is
communicated to the JT1001 controller using a PDC; i.e., one buffer
completely contains all of the data to be transferred to/from the JT1001
controller.

• The address of the data buffer is passed to the JT1001 controller using a
small (8-bit) ordinal value that indexes a table maintained on the JT1001
controller. The table has the complete set of physical addresses of buffers
allocated by the DRIVER for data transfer purposes.

• The length of the buffer to be copied to/from JT1001 controller is contained
within the PDC command.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-6

Theory of Operations
The actual format of a PDC command is as follows:

Upon closer inspection, one other optimization can be realized with the PDC
technique. There is no restriction inherent to the PDC technique that prevents
multiple packets from being copied by the HOST (or the JT1001 controller,
depending on direction) into the pre-allocated data transfer buffers. In fact, if the
data format used for the pre-allocated buffers parallels the data formats used
internally by the JT1001 controller, then multiple packets can be easily formatted
into the PDC buffers and subsequently transferred to the JT1001 controller with
one I/O operation by the HOST (PDC command transfer to the JT1001
controller) and one burst transfer of data by the JT1001 controller.

Thus, Propulsion technique is efficient in its use of bus bandwidth by minimizing
the per-buffer overhead associated with the transfer of data to/from the JT1001
controller. Note that the per-buffer overhead includes the number of interactions
between HOST software and the JT1001 controller; e.g., interrupts (especially
on receive since multiple packets can be delivered into a single PDC and only
one interrupt is generated to signal their arrival), command block exchanges,
and PIO operations to the device.

Although the PDC technique is very efficient in its use of bus bandwidth, this
efficiency does not come without a price. The single most significant drawback
of the PDC method is that it requires that the processor move data from
application buffers into data transfer buffers — in other words, increased CPU
utilization. At first glance, this double copy would seem an insurmountable
obstacle to the emergence of PDC as the preferred data transfer technique.
However, when one considers that on average many tens, if not hundreds, of
CPU clocks are expended in performing virtual-to-physical address translations,
and that often times, many such translations are performed per buffer transferred
to the JT1001 controller, it becomes evident that a large amount of data can be
moved by the CPU in the same amount of time taken for an address translation.
Certainly for small data transfers (and virtually half of all data transfers are small),
the technique is useful since many tens, if not hundreds, of bytes can be moved
in the time it takes to make just one virtual-to-physical address translation.
Moreover, as CPUs move to 64-bit and larger word sizes, the efficacy of this
technique increases.

Another significant point is that the concern over CPU utilization is not
paramount in all systems. Especially in systems where large amounts of data
are moved about; e.g., bus utilization is high, and the CPU has nothing else to
do, then favoring bus utilization at the expense of CPU utilization can be a
desirable trade-off to make. This argument can be extended to multiprocessor

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

X
F
D
N
I
N
R
Q

B
F
I
D

B
F
L
E

JATO TECHNOLOGIES

3-7
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
machines where CPU bandwidth outpaces bus bandwidth by a large margin.
Here, too, expending CPU utilization to gain bus utilization may be a worthwhile
trade-off.

Figure 3-4 depicts the process of data transfer using PDCs.

Figure 3-4. PDC Data Transfer Process

PDC
Buffer

n

Data
Buffer

n

Data
Buffer

1

Data
Buffer

0

Header

VFrag 0

VFrag 1

•
•
•

VFrag n

Transmit PDL
Address MSD/
LSD Register

Transmit PDC
Register

Other Device
Registers
(CSRs)

Transmit PDC
Bfr Adrs Table

Index Reg

TX PDC Bfr Adrs
Tbl MSD/LSD

Reg

PCI
Interface

PDC
{1}

{4}
Data Bfr Descriptor Virtual Addresses

{6}

Bus Master
CONTROLLER

{13}

Transmit Data FIFO To MAC
To Command

Execution
Queue

Unused if
Next PDL

Can Not Be
Fully

Expanded
Into Space

PDL (Cmd 2)

PDC (Cmd 1)

PDC (Cmd 0)

Address 0

Address 1

Address 2

Address n

•
•
•

{9}

{7}

TX Cmd
FIFO

1 = PDC
0 = PLD

Cmd 0

Cmd 1

Cmd 2

Cmd n

•
•
•

1

0

1

x

•
•
•

TX PDC
Buffer

Table

Software Device

Buffer
Pool

PDC
Buffer

1

PDC
Buffer

0 Buf ID Len

PDC Command

{5}

{11}

{2}

{3}

{10}

{8}

{12}

Addr.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-8

Theory of Operations
The sequence for packet transmission when using PDCs is actually broken into
two phases. The first phase happens once during device/driver initialization. It
consists of steps 1, 2, and 3, as follows:

1. A pool of locked buffers is allocated from the system. Each buffer is
made large enough to accommodate one or more full-size packets. If
the individual buffers are made larger than the HOST system’s page
size (for virtual memory systems), the buffers must be contiguous (i.e.,
in adjacent pages with the lowest physical address residing in the
lowest numbered page).

2. The Transmit PDC Buffer Address Table Index Register is pointed to
the number 0 Buffer Address Table slot.

3. The addresses of the buffers in the pool are written to the table. Several
important points can be mentioned here:

a. The Transmit PDC Buffer Address Table does not need to be fully
utilized. For example, if only two transmit PDC buffers are desired,
then only two Transmit PDC Buffer Address Table entries need be
used.

b. Addresses in the table do not need to be in adjacent slots.

c. Addresses in the table do not need to be in any particular order.

d. The Transmit PDC Buffer Address Table Index Register
auto-increments with each write to the Transmit PDC Buffer Address
LSD Register. This facilitates the writing of strings of buffer
addresses to the device. However, the index register can be written
prior to every write to the address MSD/LSD registers, thus allowing
random write access to the table (both the address and index
registers are write only).

The second phase is comprised of steps 4 through 13. These steps happen
each time one or more packets are transmitted using a PDC buffer:

4. An indication is received by the JT1001 system software that one or
more packets are to be transmitted. The indication is accompanied by
some form of packet descriptor data structure usually containing
multiple packet buffer fragments (possibly describing multiple packets)
that are to be sent in the sequence that they are found in the descriptor.

5. The addresses of the packet fragments found in the packet descriptor
can be virtual or physical addresses. It is typical for them to be the
virtual addresses of packet buffer fragments constructed by a protocol
stack. The driver software responds by allocating (dequeuing) a PDC
buffer from the PDC buffer pool and block copying the packet(s) into
successive locations within the PDC buffer. Note that in the case where
multiple packets are transferred using a single PDC buffer, “fence
posts” are inserted between the packets. Details pertaining to the fence
posts are provided in the section describing the Transmit PDC LSD
Register.
JATO TECHNOLOGIES

3-9
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
6. After copying all of the packet data to a PDC buffer, a PDC is formatted
and passed to the JT1001. To do this, the length of the PDC buffer, the
buffer ID corresponding to the buffer, and any processing options are
formatted into a 32-bit CPU register. The contents of the CPU register
are then written to the device’s Transmit PDC Register. This action has
the effect of placing the PDC into the transmit command FIFO and
setting a control bit in the FIFO identifying the command as a PDC.

7. When one or more commands are present in the transmit command
FIFO, the bus master JT1001 controller (BMC) is prompted to examine
the FIFO and extract the first available command. In our example, the
queue is assumed to be empty prior to the transmit request and thus the
PDC is acted upon at the first available opportunity.

8. When the BMC looks at the command FIFO, it determines that the
command is a PDC and moves it directly to the Command Execution
Queue.

9. The BMC now takes the PDC command and begins to execute it. It
does so by decoding the BFID and BFLE fields (see the Transmit PDC
Register for a discussion of the PDC command format).

10. The BMC uses the BFID value in the PDC command to index the
Transmit PDC Buffer Address Table and obtain the starting physical
address of the buffer to be transferred to the JT1001 controller.

11. Once the PDC has been decoded and the starting physical address
obtained, the BMC instructs the PCI block to initiate a buffer data
transfer to the TX FIFO.

12. The PCI block transfers the buffer data to the TX FIFO at the next
available opportunity.

13. Once the packet is completely transferred to the data FIFO, the BMC
signals the data FIFO that a complete packet has been transferred. The
FIFO control logic then updates its pointers and signals the MAC that a
packet is ready for transmission.

3.2 INITIALIZATION

This section contains a discussion of topics related to the initialization of the
JT1001. Example pseudo-code is also provided to demonstrate algorithms for
initializing the JT1001 controller for PIO, PDL, and PDC I/O methods.

3.2.1 Reset
The JT1001 controller accepts two types of resets: hard reset and soft reset. A
hard reset occurs when the PCI RST signal is asserted. The JT1001 controller
takes the following actions when performing a hard reset:

• All internal state machines of the JT1001 controller are reset to their initial
state.

• All internal registers of the JT1001 controller are reset to their default value.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-10

Theory of Operations
• All CSRs are reset to their default value.

• All PCI configuration space registers are reset to their default value.

• If an EEPROM is present, the JT1001 controller reads the EEPROM and
reloads selected CSRs and PCI configuration registers with the values read
from EEPROM. For a detailed list of the registers loaded from EEPROM,
see Figure 7-1.

A soft reset occurs when HOST software sets the SWRE bit in Mode
Register – 1. The JT1001 controller takes the same actions for a soft reset as
it does for a hard reset with one exception. During a soft reset, the JT1001
controller does not reset the PCI configuration space registers. This is necessary
to preserve the hardware resources assigned to the device by system BIOS
and/or the operating system.

If HOST software attempts to access the JT1001 controller while a hard or soft
reset is in progress, the JT1001 controller generates a PCI retry until the reset
has completed. The JT1001 controller indicates a PCI retry to the HOST/PCI
bridge by asserting the STOP and deasserting TRDY, while keeping DEVSEL
asserted during the first data phase of the access. Upon receiving this indication,
the HOST/PCI bridge terminates the transaction. After waiting at least two PCI
bus cycles, the HOST/PCI bridge will retry the access. The HOST/PCI bridge
will continue retrying until the access succeeds. From the perspective of HOST
software, the I/O instruction that generated the access blocks until the JT1001
controller’s reset completes. To avoid the PCI bus and processor inefficiencies
associated with PCI retries, after initiating a soft reset, HOST software should
wait 20 ms before it attempts any I/O to the JT1001 controller. Delaying 20 ms
allows the JT1001 controller to fully reset without having to issue PCI retries.

3.2.2 Physical Layer Configuration and Status
The JT1001 controller supports three physical layer interfaces: MII, GMII, and
PCS. Regardless of the type of PHY present, HOST software interacts with PHY
using the G/MII PHY Access Register. HOST software accesses PHY registers
through this register. HOST software can assume the MII basic register set is
present. The basic register set consists of the Control Register (register 0) and
the Status Register (register 1). GMII compliant PHYs have an extended basic
register set that includes the Extended Status Register (register 15) in addition
to the MII basic register set. If a PHY implements the Extended Status Register,
it sets bit 8 in its Status Register. See IEEE Standard 802.3z, clause 22, for a
detailed description of the basic, extended basic, and extended register sets.
HOST software can also access vendor specific registers on the PHY using the
G/MII PHY Access Register.

To read the Status Register of the PHY at address 2, for example, HOST
software writes the following values to the G/MII PHY Access Register:
GMRRIX = 1, GMCM = 0, GMPHAD = 2. HOST software then polls the register
waiting for GMST = 0. When GMST = 0, the JT1001 controller has completed
the read operation and GMDA contains the value read from PHY. Write
operations occur in a similar manner, except that HOST software puts the value
to be written to the PHY register in the GMDA field when it initiates the request
to the G/MII PHY Access Register.
JATO TECHNOLOGIES

3-11
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
At initialization time, HOST software is responsible for querying PHY to
determine the type of PHY (MII or GMII), the current link speed, and the current
duplex mode. Once this is determined, HOST software must set the appropriate
values in the G/MII Mode Register. Setting the G/MII Mode Register determines
how the JT1001 controller interacts with PHY when transmitting and receiving
packets.

The JT1001 controller has the capability to poll PHY’s Status register and
generate an interrupt when PHY’s Status Register changes. This capability
provides an efficient mechanism to detect changes in the physical layer status.
When the interrupt occurs, HOST software can query PHY to determine the
exact change in PHY status. HOST software enables this capability by setting
the GMSTPOEN bit in Mode Register – 1 and the PHLASTMS bit in the Interrupt
Mask Register.

3.2.3 PDC Buffer Allocation
When using the PDC I/O method, HOST software must allocate PDC buffers.
HOST software allocates PDC buffers such that they have the following
attributes:

• A PDC buffer is physically contiguous. A buffer may span one or more page
boundaries as long as the pages are physically contiguous.

• A PDC buffer is locked. The operating system will not swap the buffer to
disk or move it a new location in physical memory.

• If possible, the starting address of a receive PDC buffer is on a cache line
boundary and the buffer length is evenly divisible by the cache line size.
This allows the JT1001 controller to use memory write and invalidate
commands when transferring data into the buffer.

When HOST software allocates a PDC buffer, it places the physical address of
the PDC into either the Transmit PDC Buffer Address Table or the Receive PDC
Buffer Address Table. Each of these tables hold a maximum of 64 PDCs. HOST
software does not have to use every entry in the table.

3.2.4 PDL Buffer Allocation
When using the PDL I/O method, HOST software must allocate PDL buffers.
HOST software allocates PDL buffers such that they have the following memory
attributes:

• A PDL buffer is physically contiguous. A buffer may span a page boundary
as long as the pages are physically contiguous.

• A PDL buffer is locked. The operating system will not swap the buffer to
disk or move it to a new location in physical memory.

• At a minimum, the starting address of a PDL buffer must begin on a
QWORD boundary. If possible, the starting address of PDLs should begin
on a cache line boundary and the PDL buffer length is a multiple of cache
lines. This allows the JT1001 controller to use memory write and invalidate
commands when transferring data into the PDL buffer. The use of memory
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-12

Theory of Operations
write and invalidate commands improves system performance by
eliminating unnecessary cache line writes to memory.

The fragment buffers pointed to by a PDL have the same memory attributes as
a PDL with the following exception: fragments can be allocated on any byte
boundary. This is necessary because fragments are typically allocated by upper
layer software and are ephemeral in nature.

3.2.5 System Initialization Event Sequence
At system initialization time, the following sequence of events occurs.

1. The RST signal on the PCI bus is asserted, causing the JT1001
controller to perform a hard reset.

2. HOST BIOS reads and writes the JT1001 controller’s PCI Configuration
Space Registers to determine the JT1001 controller’s capabilities and
resource requirements.

3. HOST BIOS assigns resources to the JT1001 controller by writing to the
JT1001 controller’s PCI Configuration Space Registers.

4. If an expansion ROM is attached to the JT1001 controller, HOST BIOS
shadows (copies) the expansion ROM image into system RAM.

5. If the JT1001 controller is the active boot device, HOST BIOS invokes
the expansion ROM image to bring the JT1001 controller to a fully
operational state.

6. The operating system is loaded (either from a local disk or via the
network connection provided by the JT1001 controller) and HOST
BIOS gives control to the operating system.

7. The operating system loads and invokes the HOST device driver
software for the JT1001 controller.

3.2.6 Initialization Algorithm
The pseudo-code in Table 3-1 demonstrates a typical algorithm HOST device
driver software uses to bring the JT1001 controller to a fully operational state.
The “@” in the right-hand column indicates lines where HOST software
accesses the JT1001 controller.

Table 3-1. Initialization Pseudo-Code

(1) Function Initialize (TransmitPacketList)

(2) Locate the device using PCI services provided by BIOS or the operating system. @

(3) Query the CONTROLLER’s PCI Configuration Registers to determine the
IO Base Address, Memory Base Address, and Interrupt level.

@

(4) Select the desired mode settings via Mode Register – 1 (CSR00) and
Mode Register – 2 (CSR001)

@

(5) If (the user has configured a locally administered address)
JATO TECHNOLOGIES

3-13
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
(6) Program the locally administered address into the LAN Physical
Address Registers (CSR42 and CSR43).

@

(7) Endif

(8) Query the PHY via G/MII PHY Access Register (CSR44) to determine the link status,
 duplex mode, and link speed.

@

(9) If (the current PHY mode is incompatible with the link speed, duplex mode, or auto-
negotiation modes settings the user has requested)

(10) Reprogram the PHY to the user requested settings using CSR44. @

(11) If necessary, force the PHY to renegotiate with its link partner to reflect the
new PHY settings.

@

(12) Endif

(13) Set the appropriate link speed and duplex mode values in the G/MII Mode Register
(CSR45).

@

(14) Perform the BIST test using the BIST Register in the PCI Configuration space. @

(15) Call LoopbackTest(). See below. @

(16) If (the loopback test failed)

(17) Return indicating a fatal error occurred. @

(18) Endif

(19) If (a bus mastering method will be used to transmit packets)

(20) Read TXCMFECN from the Command Status Register (CSR51) and save the result
in TxCommandsAvailable.

@

(21) Note: PDC and PDL modes are not mutually exclusive.

(22) If (the PDC I/O method will be used to transmit packets)

(23) Call InitializePDCTransmit() @

(24) Endif

(25) If (the PDL I/O method will be used to transmit packets)

(26) Call InitializePDLTransmit()

(27) Endif

(28) Else

(29) Read TXFIDWCN from the TX FIFO DWORDs Free Register (CSR21). @

(30) Set BytesFreeInTxFIFO = TXFIDWCN * the number of bytes in a DWORD.

(31) Endif

(32) If (PDC and/or PDL I/O method will be used for receiving)

(33) Read RXCMFECN from the Command Status Register (CSR51) and save the result
in RxCommandsAvailable.

@

(34) If (the PDC I/O method will be used to receive packets)

(35) Call InitializePDCReceive(RxCommandsAvailable). @

(36) Endif

(37) If (the PDL I/O method will be used to receive packets)

(38) Call InitializePDLReceive(RxCommandsAvailable). @

(39) Endif

(40) Set the interrupt mask RXPDMS in the Interrupt Mask Register (CSR30). This
will cause an interrupt each time the CONTROLLER has filled a PDL or PDC
with a inbound packet.

@

(41) Else using PIO method

(42) Set the interrupt mask RXMS in the Interrupt Mask Register (CSR30). This will
cause an interrupt when there is at least one packet in the RX FIFO.

@

(43) Endif

(44) Enable the transmitter and receiver by setting the TXEN and RXEN bits in
Mode Register – 1 (CSR00).

@

Table 3-1. Initialization Pseudo-Code (Continued)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-14

Theory of Operations
(45) Install the interrupt service routine to handle interrupts generated by the CONTROLLER.

(46) Enable the CONTROLLER’s ability to generate an interrupt by setting the
INENMS bit in the Interrupt Mask Register (CSR30).

@

(47) Return Success.

(48) Endfunction

(49)

(50) Function LoopbackTest()

(51) Enable MAC level loopback using the LPBKMD field in Mode Register – 2 (CSR01). @

(52) Enable the transmitter and receiver by setting the TXEN and RXEN bits in
 Mode Register – 1 (CSR00).

@

(53) Transmit a packet to self using PIO method. @

(54) Poll the RXPKAV bit in the Chip Status Register (CSR11) until it is set. @

(55) Receive the packet just transmitted using PIO receive. @

(56) If (errors occurred transmitting or receiving the loopback packet)

(57) Return indicating PIO loopback test failed.

(58) Endif

(59) Build and issue a PDL receive command to the CONTROLLER. @

(60) Build and transmit a packet to self using PDL method. @

(61) Wait for RXDMDNCN field in the Command Status Register (CSR51) to
be non-zero.

@

(62) Examine the packet just received. @

(63) If (errors occurred transmitting or receiving the loopback packet)

(64) Return indicating PDL loopback test failed.

(65) Endif

(66) Build and issue a PDC receive command to the CONTROLLER. @

(67) Build and transmit a packet to self using PDC method. @

(68) Wait for RXDMDNCN field in the Command Status Register (CSR51) to
be non-zero.

@

(69) Examine the packet just received. @

(70) If (errors occurred transmitting or receiving the loopback packet)

(71) Return indicating PDC loopback test failed.

(72) Endif

(73) Disable the transmitter and receiver by clearing the TXEN and RXEN bits
in Mode Register – 1 (CSR00).

@

(74) Return success.

(75) Endfunction

(76)

(77) Function InitializePDCTransmit()

(78) Set the initial table index in the Transmit PDC Buffer Address Table Register (CSR02)
to zero.

(79) For (the number of transmit PDC buffers to be allocated — up to the maximum of 64)

(80) Allocate a transmit PDC buffer.

(81) Write the physical address of the transmit PDC buffer to the Transmit PDC Buffer
Address Registers (CSR05 and CSR04). Writing to CSR04 causes the
TBIX to automatically increment.

@

(82) Add the PDC to the TransmitPDCAvailableList.

(83) Endfor

(84) Endfunction

(85)

Table 3-1. Initialization Pseudo-Code (Continued)
JATO TECHNOLOGIES

3-15
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
The initialization pseudo-code above and the pseudo-code for packet
transmission, packet reception, and interrupt processing that follow constitute
a pseudo driver of sorts. The intent of the pseudo driver is to demonstrate the
basic concepts of programming the JT1001 controller. It does not represent the
only way or the necessarily the optimal way to operate the JT1001 controller.

The pseudo driver is based upon the following set of assumptions and design
points:

• The driver will transmit packets using the PIO I/O method or a mixture of
PDL/PDC I/O methods. It does not mix the PIO I/O method with other I/O
methods.

(86) Function InitializePDCReceive(ReceiveCommandsAvailable)

(87) Set the initial table index in the Receive PDC Buffer Address Table Register (CSR06)
to zero.

(88) For (for the number of PDC buffers to be allocated — up to the maximum of 64)

(89) Allocate a PDC buffer from the operating system.

(90) Write the physical address of the receive PDC buffer to the Receive PDC Buffer
Address Registers (CSR09 and CSR08). Writing to CSR08 causes the TBIX
to automatically increment.

@

(91) If (RxCommandsAvailable)

(92) Call PDCQueueReceiveCommand(PDC, ReceiveCommandsAvailable)
See Table 3-7

(93) Else

(94) Put the PDC on ReceivePDCAvailableList.

(95) Endif

(96) Endfor

(97) Endfunction

(98)

(99) Function InitializePDLTransmit()

(100) For (the number of transmit PDL buffers to be allocated)

(101) Allocate a transmit PDL.

(102) Put the PDL on the TransmitPDLAvailableList.

(103) Endfor

(104) Endfunction

(105)

(106) Function InitializePDLReceive(RxCommandsAvailable)

(107) For (for the number of PDL buffers to be allocated)

(108) Allocate a PDL buffer from the operating system.

(109) If (RxCommandsAvailable)

(110) Allocate a ReceivePacketDescriptor from the operating system.

(111) Call PDLQueueReceiveCommand (PDL, ReceivePacketDescriptor,
RxCommandsAvailable).
See Table 3-6

@

(112) Else

(113) Put the PDL on ReceivePDLAvailableList.

(114) Endif

(115) Endfor

(116) Endfunction

Table 3-1. Initialization Pseudo-Code (Continued)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-16

Theory of Operations
• The driver receives packets using the PIO mode, PDL, or PDC I/O methods.
It does not mix I/O methods when receiving.

• The protocol stack provides a list of packets to transmit rather than one
packet.

• The driver indicates received packets to the protocol stack one at a time.

The Initialize() function is the top level function. It is responsible for bringing the
device into an operational state. In a real driver, this function is called
immediately after the driver is loaded. The major tasks it performs are:

• Locating the device.

• Initializing the PHY.

• Performing a MAC loopback test using the PIO I/O method.

• Allocating PDC buffers and initializing the PDC buffer address tables.

• Allocating PDLs.

• Hooking an interrupt and enabling the JT1001 controller’s ability to
generate an interrupts for transmit and receive events.

The variables used to model the JT1001 controller’s transmitter and receiver
states will be discussed in later sections.

3.3 TRANSMIT PACKET PROCESSING

This section contains discussions on topics related to transmitting packets with
the JT1001. Example pseudo-code is also provided to demonstrate algorithms
for transmitting a packet in PIO, PDL, and PDC modes.

3.3.1 Transmit Packet Padding
By default, when transmitting a packet that is smaller than the minimum packet
size, the JT1001 controller adds padding bytes to the end of the packet. For
Ethernet, the minimum packet size is 60 bytes, excluding the CRC. The pad
bytes added by the JT1001 controller are included in the CRC calculation of the
packet. The JT1001 controller’s ability to pad undersized packets can be
disabled by clearing the TXPPEN bit in Mode Register – 1. When this feature
is disabled, it is the responsibility of HOST software to pad the packets prior to
giving them to the JT1001 controller for transmission. Failure to do so results in
runt packets being transmitted on the network.

3.3.2 VLAN Tag Header Insertion
The JT1001 controller provides the capability to insert VLAN tag headers during
the transmission of packets. See Section 3.9 for a detailed description of how
to use this function.

3.3.3 CRC Generation
By default, the JT1001 controller calculates and appends a 4-byte CRC to
outbound packets. This capability can be disabled by clearing the TXCREN bit
JATO TECHNOLOGIES

3-17
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
in Mode Register – 1. When TXCREN is cleared, it is the responsibility of HOST
software to include a CRC in the packet data given to the JT1001 controller.

HOST software should ensure the TXCREN bit is set whenever it has enabled
other JT1001 controller features that cause the JT1001 controller to insert or
modify packet data prior to the packet’s transmission. In particular, the TXCREN
bit should be set when HOST software has enabled VLAN tag header insertion,
TCP/IP checksum insertion, or transmit packet padding. Failure to set the
TXCREN in these circumstances results in a packet containing an invalid CRC
to be transmitted onto the network.

3.3.4 Transmit Completion Status
The JT1001 implements a “lying send” transmit policy. This means a packet is
considered to be successfully transmitted as soon as it is copied into the JT1001
controller’s TX FIFO. When using the PIO I/O method, this occurs as soon as
HOST software has moved the packet into the TX FIFO. When using the PDL
and PDC I/O methods, this occurs as soon as the JT1001 controller has
transferred the packet data into the TX FIFO. Ultimately, it is the responsibility
of the protocols above the driver to ensure that packets are successfully
transmitted to remote stations. If a packet is lost during transmission by the
JT1001 controller, the protocol is responsible for recognizing that the packet is
lost and effecting a corrective action (e.g., retransmit).

3.3.5 Transmit Statistics
The JT1001 controller maintains the following packet transmission statistics:
aFramesTransmittedOK, aSingleCollisionFrames, aMultipleCollisionFrames,
Errored Transmit Packet Count, TCP/IP Non Ipv4 Packet Count, and Late
Collision Count. The counts do not wrap. See Table 5-1 for a detailed description
of these statistics.

3.3.6 Simultaneous Use of PDL, PDC, and PIO I/O Methods
The JT1001 controller supports the use of PDL and PDC I/O methods
simultaneously. When transferring data, HOST software indicates the desired
data transfer method by the CSR used to initiate the transfer. For packet
transmission using the PDC I/O method, HOST software initiates the process
by writing to the Transmit PDC Register. If the HOST wishes to transmit a packet
using the PDL method, it writes to the Transmit PDL Address Register instead.

Although intermixing of PDC and PDL transmit commands is directly supported
by the JT1001 controller, intermixing of PIO with either PDC or PDL transfer
methods is not directly supported. It is possible to intermix PIO with the other
two transfer methods, however, careful coordination must be carried out to
prevent simultaneous accesses to the TX FIFO by the JT1001 controller’s
System Interface Block and HOST software. More specifically, prior to initiating
a transmission using the PIO method, HOST software must guarantee that all
PDL and/or PDC transmit commands issued have been completed by the
JT1001 controller. A PDL and PDC transmit command is considered completed
when the JT1001 controller has transferred the transmit packet data from HOST
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-18

Theory of Operations
memory into the JT1001 controller’s TX FIFO and incremented the TXDMDNCN
count in the Command Status Register.

3.3.7 Programmed Input/Output Method of Transmission
PIO mode is often referred to as a slave mode. The two terms are used
interchangeably in this document. In PIO mode, the HOST is responsible for
effecting all packet data movement to and from the JT1001 controller.

Transmitting a packet using the PIO method is a four-step process:

1. Determining the TX FIFO has enough free space to accommodate the
transmit header and packet.

2. Writing the transmit header to the TX FIFO.

3. Writing the packet data to the TX FIFO.

4. Issuing the transmit command.

The JT1001 controller maintains a count of the number of free DWORDs in the
TX FIFO. The JT1001 controller decrements the count as data is written to the
FIFO, and increments the count as data is removed from the FIFO and
transmitted. HOST software ascertains this count by reading the TX FIFO
DWORDs Free Register. If the TX FIFO does not contain enough free space to
accommodate the packet, HOST software must wait until enough free space
exists. HOST software waits by polling, retrying periodically, or by requesting
an interrupt be generated when the TX FIFO hits a low watermark. Refer to the
TX FIFO Low Watermark Register description for more information on how to
generate a TX FIFO low watermark interrupt.

Once HOST software has determined the TX FIFO can accommodate the
packet, it constructs the transmit header and writes it to the TX FIFO via the TX
FIFO Write Register. Next, HOST software copies the data to the JT1001
controller’s TX FIFO by sequencing through the packet data and writing it to the
TX FIFO Write Register. HOST software then sets the SLMDTXCM bit in the
Command Register to indicate the entire packet is in the TX FIFO and is ready
for transmission. The JT1001 controller transmits the packet data onto the
network in the order that it is written to the TX FIFO Write Register.

The pseudo-code in Table 3-2 demonstrates how to transmit a list of packets
using the PIO data transfer method. Lines with an “@” in the right-hand column
indicate an access to the JT1001 controller.

Table 3-2. PIO Transmit Pseudo-Code

(1) Function PIOTransmitPacketList(TransmitPacketList)

(2) Get the first packet from TransmitPacketList.

(3) While (there is a packet to be transmitted)

(4) PacketLength = the number of bytes in the packet.

(5) Set RetryCount = MAX_RETRIES + 1.

(6) While (BytesFreeInTxFIFO < PacketLength + number of bytes in the
transmit header)
JATO TECHNOLOGIES

3-19
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
The PIO transmit pseudo-code models the JT1001 controller’s transmitter using
the variable BytesFreeInTxFIFO. This variable represents the minimum number
of unused bytes in the TX FIFO at any given point in time. The variable is used

(7) If (RetryCount = 0)

(8) Set the transmit status code for the current and all remaining packets
 in TransmitPacketList to indicate they did not transmit.

(9) Return out of TX FIFO resources.

(10) Endif

(11) Read TXFIDWCN from the TX FIFO DWORDs Free Register (CSR21). @

(12) Set BytesFreeInTxFIFO = TXFIDWCN * the number of bytes in a DWORD.

(13) Decrement RetryCount.

(14) Endwhile

(15) Determine the per packet processing options.

(16) Construct the FIFO Transmit Header using the PacketLength and per packet
processing options.

(17) Write the FIFO Transmit Header to the TX FIFO Write Register (CSR22). @

(18) For (each fragment in the packet)

(19) If (the fragment starting address is odd)

(20) Write the first BYTE of the fragment to the TX FIFO Write
Register (CSR22).

@

(21) Endif

(22) If (the fragment starting address is not evenly divisible by the size of a DWORD)

(23) Write the next WORD of the fragment to the Transmit FIFO Write Register
(CSR22).

@

(24) Endif

(25) While (at least a DWORD remains in the fragment)

(26) Write the next DWORD of the fragment to the Transmit FIFO Write
Register (CSR22).

@

(27) Endwhile

(28) If (at least a WORD is remains in the fragment)

(29) Write the next WORD of the fragment to the Transmit FIFO Write Register
(CSR22).

@

(30) Decrement the remainder by the size of a WORD.

(31) Endif

(32) If (a BYTE remains in the fragment)

(33) Write the next BYTE of the fragment to the TX FIFO Write Register
(CSR22).

@

(34) Endif

(35) Endfor

(36) Decrement BytesFreeInTxFIFO by (the number of bytes in the packet rounded
up to the next multiple of 8) + the size of the transmit header.

(37) Start the PIO transmit by setting the SLMDTXCM in the Command Register
(CSR29).

@

(38) Set the packet’s transmit status code to success.

(39) Get the next packet in the TransmitPacketList.

(40) Endwhile

(41) Return Success.

(42) Endfunction

Table 3-2. PIO Transmit Pseudo-Code (Continued)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-20

Theory of Operations
to determine if there is enough space in the TX FIFO to accommodate a packet
and its transmit header. Initially, BytesFreeInTxFIFO is set to the size of the TX
FIFO. Each time a packet is copied into the TX FIFO, BytesFreeInTxFIFO
decrements by the number of bytes in the packet plus the size of the transmit
header rounded up to the next QWORD boundary.

3.3.8 Packet Descriptor List Method of Transmission
The pseudo-code in Table 3-3 demonstrates how to transmit a list of packets
using the PDL data transfer method. Lines with an “@” in the right-hand column
indicate an access to the JT1001 controller.

Table 3-3. PDL Transmit Pseudo-Code

(1) Function PDLTransmitPacketList(TransmitPacketList)

(2) Get the first packet from TransmitPacketList.

(3) While (there is a packet to be transmitted)

(4) If (TransmitCommandsAvailable = 0)

(5) Read TXCMFECN from the Command Status Register (CSR51). @

(6) If (TXCMFECN = 0)

(7) Set the transmit status code for the current and all remaining packets
in TransmitPacketList to indicate they did not transmit.

(8) Return indicating no more transmit commands are available.

(9) Else

(10) TransmitCommandsAvailable = the value read from TXCMFECN.

(11) Endif

(12) Endif

(13) If (a PDL buffer is available)

(14) Get a PDL from the TransmitPDLAvailableList.

(15) TotalLength = 0.

(16) PDLFragmentIndex = 0.

(17) For (each fragment in the packet)

(18) If (the fragment is not in locked memory)

(19) Call the operating system to lock the memory.

(20) Endif

(21) If (the fragment address is a virtual address)

(22) Call operating system to convert the virtual address to a list of
physical addresses.

(23) Endif

(24) For (each of the virtual fragment’s physical addresses)

(25) Set PDL.FGAD[PDLFragmentIndex] to the physical fragment
address.

(26) Set PDL.FGLE[PDLFragmentIndex] to the number of bytes in the
physical fragment.

(27) TotalLength = TotalLength + the number of bytes in the physical
fragment.

(28) Move to the next physical fragment in the physical address list.

(29) Increment PDLFragmentIndex.

(30) Endfor

(31) Endfor
JATO TECHNOLOGIES

3-21
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
The PDL transmit pseudo-code models the JT1001 controller’s transmitter state
using the following variables:

• TransmitCommandsAvailable — This variable is the minimum number of
additional transmit commands the JT1001 controller can take at any given
point in time. Each time a transmit PDL or PDC command is given to the
JT1001 controller, this count decrements. When it reaches 0, the count is
refreshed by reading the TXCMFECN field in the Command Status
Register.

• TransmitPDLAvailableList — This is a list of PDLs available for transmitting
packets. This pool of transmit PDLs is allocated at initialization time. Each
time a packet is transmitted using the PDL I/O method, a PDL is removed
from this list. PDLs are returned to this list after a PDL transmit command
completes.

• TransmitCommandsInProgressQueue — This is a FIFO queue of PDL and
PDC commands issued to the JT1001 controller. This queue preserves the
ordering in which the commands were issued to the JT1001 controller.
When a transmit PDL or PDC command is given to the JT1001 controller,
the PDL or PDC is enqueued on this queue. Items are taken off this queue
when a TXDMDNIN interrupt occurs.

(32) Set PDL.PKLE field to the TotalLength calculated.

(33) Set PDL.FGCN field to PDLFragmentIndex.

(34) Set the desired per packet processing options in the PDL header.

(35) Queue the PDL onto the TransmitCommandsInProgressQueue.

(36) Write the MSD of the PDL’s physical address to Transmit PDL
Address MSD Register (CSR13).

@

(37) Write the LSD of the PDL’s physical address to Transmit PDL
Address LSD Register (CSR12).

@

(38) Set the transmit status code status for the packet to indicate the transmit is
in progress.

(39) Decrement TransmitCommandsAvailable.

(40) Else

(41) Set the transmit status code for the current and all remaining packets in
TransmitPacketList to indicate they did not ransmit.

(42) Return indicating no more PDLs are available.

(43) Endif

(44) Get the next packet in the TransmitPacketList.

(45) Endwhile

(46) Return Success

(47) Endfunction

(48)

(49) Function PDLTransmitDMADoneEvent(PDL)

(50) Call the protocol stack and indicate the packet associated with this PDL was transmitted
successfully.

(51) Queue the PDL on the TransmitPDLAvailableList.

(52) Endfunction

Table 3-3. PDL Transmit Pseudo-Code (Continued)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-22

Theory of Operations
The PDLTransmitPacketList() function transmits a list of packets it is given as
input. For each packet in the list, it performs the following major tasks:

• Determines if the JT1001 controller can accept any more transmit
commands.

• Prepares the fragments that constitute a packet to be transmitted for the
JT1001 controller. Preparing the fragments involves:

— Locking the fragments memory.

— Acquiring the physical addresses of the fragments.

• Constructs a PDL using the physical addresses and lengths of the
fragments.

• Writes the physical address of the PDL to the JT1001 controller’s Transmit
PDL Address Registers (CSR13 and CSR12).

PDLTransmitDMADoneEvent() is called by the interrupt handler each time the
JT1001 controller has completed processing for a transmit PDL. When called,
it notifies the protocol stack that the packet has been transmitted successfully
and returns the PDL associated with the packet back to the list of available
transmit PDLs.

3.3.9 Packet Propulsion Mode Method of Transmission
The pseudo-code in Table 3-4 demonstrates how to transmit a list of packets
using the PDC data transfer method. Lines with an “@” in the right-hand column
indicate an access to the JT1001 controller.

Table 3-4. PDC Transmit Pseudo-Code

(1) Function PDCTransmitPacketList(TransmitPacketList)

(2) Set Offset = size of PDC Buffer to cause a PDC to be obtained during the first iteration of
the loop.

(3) Set PDC = NULL to indicate there is not a PDC awaiting ready to be given to the
CONTROLLER.

(4) Get the first packet from TransmitPacketList.

(5) While (there is a packet to be transmitted)

(6) If (TransmitCommandsAvailable = 0)

(7) Read TXCMFECN from the Command Status Register (CSR51). @

(8) If (TXCMFECN = 0)

(9) Set the transmit status code for the current and all remaining packets in
TransmitPacketList the list to indicate they did not transmit.

(10) Return indicating no more transmit commands are available.

(11) Else

(12) TransmitCommandsAvailable = the value read from TXCMFECN.

(13) Endif

(14) Endif

(15) PacketLength = the number of bytes in the packet.

(16) If (the size of the PDC buffer – Offset < PacketLength + the size of the PDC
transmit header)

(17) If (PDC is not NULL)

(18) Call StartPDCTransmit(Offset, PDC’s Buffer ID).
JATO TECHNOLOGIES

3-23
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
(19) Endif

(20) If (a PDC structure is available)

(21) Get a PDC from the TransmitPDCAvailableList.

(22) HeaderOffset = 0.

(23) Else

(24) Set the transmit status code for the current and all remaining packets in
TransmitPacketList the list to indicate they did not transmit.

(25) Return indicating no more PDCs are available.

(26) Endif

(27) Else

(28) HeaderOffset = Offset.

(29) Endif

(30) Offset = HeaderOffset + the size of the PDC transmit header.

(31) For (each fragment in the packet)

(32) Copy fragment data to PDC[Offset].

(33) Offset = Offset + the number of bytes in the fragment.

(34) Endfor

(35) Set the desired packet processing options in the PDC[HeaderOffset].

(36) Set PDC[HeaderOffset].LEN = PacketLength.

(37) Offset = HeaderOffset + size of the PDC transmit header + PacketLength.

(38) Round up the Offset to the next QWORD boundary.

(39) Set the packet’s transmit status code to success.

(40) Get the next packet in the TransmitPacketList.

(41) Endwhile

(42) If (PDC is not NULL)

(43) Call StartPDCTransmit(Offset, PDC’s Buffer ID).

(44) Endif

(45) Return Success.

(46) Endfunction

(47)

(48) Function StartPDCTransmit(ActualPDCLength, PDCBufferID)

(49) If (interrupt wanted after data transfer from PDC has completed)

(50) Set the TransferDoneInterruptFlag.

(51) Endif

(52) Construct the PDC Transmit Command with the ActualPDCLength, the
PDCBufferID, and the TransferDoneInterrupt flag.

(53) Queue the PDC onto the TransmitCommandsInProgressQueue.

(54) Write the PDC Transmit Command to the Transmit PDC Register (CSR16). @

(55) Decrement TransmitCommandsAvailable.

(56) Endfunction

(57)

(58) Function PDCTransmitDMADoneEvent(PDC)

(59) Queue the PDC on the TransmitPDCAvailableList.

(60) Endfunction

Table 3-4. PDC Transmit Pseudo-Code (Continued)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-24

Theory of Operations
The PDC transmit pseudo-code models the JT1001 controller’s transmitter state
using the following variables:

• TransmitCommandsAvailable — This variable is the minimum number of
additional transmit commands the JT1001 controller can take at any given
point in time. Each time a transmit PDL or PDC command is given to the
JT1001 controller, this count decrements. When it reaches 0, the count is
refreshed by reading the TXCMFECN field in the Command Status
Register.

• TransmitPDCAvailableList — This is a list of PDCs available for transmitting
packets. This pool of transmit PDCs is allocated at initialization time. Each
time a packet is transmitted using the PDC I/O method, a PDC is removed
from this list. PDCs are returned to this list after a transmit PDC command
has completed.

• TransmitCommandsInProgressQueue — This is a FIFO queue of PDL and
PDC commands issued to the JT1001 controller. This queue preserves the
ordering in which the commands were issued to the JT1001 controller.
When a transmit PDL or PDC command is given to the JT1001 controller,
it is enqueued on this queue. Items are taken off this queue when a
TXDMDNIN interrupt occurs.

PDCTransmitPacketList() transmits a list of packets it is given as input. It
performs the following major tasks:

• Determines if the JT1001 controller can accept more transmit commands.

• Gets a PDC from the pool of available PDCs.

• Copies as many packets as it can into the PDC.

• When the PDC can not hold the next packet in the list, the PDC is added
to the TransmitCommandsInProgressQueue and is given to the JT1001
controller by writing the PDC’s index in the Transmit PDC Address Table to
the Transmit PDC Register (CSR16).

• The above steps are repeated until all packets are transmitted, no more
PDCs are available, or the JT1001 controller can not accept any more
commands.

Since PDCTransmitPacketList() copies the packet data into a transmit PDC
buffer, it reports the packet as having been transmitted successfully without
having to wait for the TXMDNIN to occur.

PDCTransmitDMADoneEvent() is called by the interrupt handler each time the
JT1001 controller has completed processing for a transmit PDC. When called,
it returns the PDC to the list of available transmit PDCs.
JATO TECHNOLOGIES

3-25
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
3.4 RECEIVE PACKET PROCESSING

This section contains discussions on topics related to receiving packets with
the JT1001. Example pseudo-code is also provided to demonstrate algorithms
for transmitting a packet in PIO, PDL, and PDC modes.

3.4.1 Packet Reception Filters
The JT1001 controller provides packet reception filters that can be applied to
received packets to determine whether or not an inbound packet is transferred
to HOST memory and indicated to HOST software. The packet reception filters
operate concurrently with respect to one another and the reception of the packet.
Conceptually, however, the filters operate in a hierarchical manner. A packet
must pass each active filter in the hierarchy before it is transferred to HOST
memory and indicated to HOST software.

The first filter in the hierarchy is the destination address filter. The destination
address filter accepts/rejects frames based on the 6-byte destination address
in a received packet’s MAC header. The acceptance of unicast, broadcast, and
multicast packets can be enabled and disabled independently via the UCEN,
BCEN, and MCEN bits in Mode Register – 1. When UCEN is set, the packet
will pass the destination address filter if the destination address matches the
address in the LAN Physical Address Registers. When the BCEN bit is set,
packets containing the all stations broadcast address will pass the destination
address filter. When the MCEN bit is set, the JT1001 controller performs a hash
operation on the destination address field of multicast packets. The result of the
hash operation is an index into a 64-bit hash table. If the hash table bit at the
index is set, the packet will pass the destination address filter, otherwise the
packet is rejected. The JT1001 controller can be configured to operate in
promiscuous mode by setting the POEN bit in Mode Register – 1. In promiscuous
mode, all packets pass the destination address filter. See the definitions for
Mode Register – 1 and the Multicast Hash Table LSD/MSD Register for more
details on configuring the destination filter.

The second filter in the hierarchy is the VLAN tag filter. The VLAN tag filter only
affects received packets containing a VLAN tag header. When configured by
HOST software, the VLAN tag filter passes packets containing a VLAN tag
header that matches the protocol ID value set in the VLAN Tag Protocol ID
Register and a tag control information (TCI) field in the VLAN Tag TCI Table.
See Section 3.9 for a detailed description of the JT1001 controller’s VLAN
support.

The third filter in the hierarchy is the errored packet filter. By default, the errored
packet filter is enabled and rejects received packets for which the JT1001
controller detects an error. The JT1001 controller detects CRC, alignment, runt,
length, and large packet errors. HOST software can change this behavior by
setting the PAERPKEN bit in Mode Register – 1. When PAERPKEN is set, the
JT1001 controller allows HOST software to receive packets containing errors.
In this case, the JT1001 controller will set the appropriate error status bits in the
packet’s receive header. Regardless of the state of the PAERPKEN bit, the
JT1001 controller always forwards received packets that result in an overflow
error (EROV).
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-26

Theory of Operations
The final filter is the TCP/IP checksum filter. When enabled by HOST software,
the JT1001 controller rejects received packets containing TCP/IP checksum
errors. See Section 3.10 for a detailed description of the JT1001 controller’s
TCP/IP checksum support.

3.4.2 Packet Receive Status
CRC, runt packet, alignment, and long packet errors are detected by the JT1001
and are signaled to HOST software by way of specific bits in the PIO/PDL/PDC
Receive header. The packet receive header also contains additional information
bits pertaining to the type of destination address the packet contained, whether
or not the packet contained valid TCP/IP checksums, and whether or not the
packet contained a VLAN tag. For details on the PIO receive header, see
Figure 5-8. For details on the PDL receive header, see Figures 5-2 and 5-3. For
details on the PDC receive header, see Figure 5-5.

3.4.3 Receive Statistics
The JT1001 controller maintains the following packet reception statistics:
aFramesReceivedOK, aFrameCheckSequenceErrors, aAlignmentErrors,
Dropped Packet Count, Errored Receive Packet Count, Runt Packet Count,
Large Packet Count, VLAN Accepted Packet Count, TCP/IP Checksum Error
Count, and VLAN Discarded Packet Count. Refer to Table 5-1 for a detailed
description of these statistics.

3.4.4 Large Packet Reception
By default, the JT1001 controller regards a packet that exceeds the maximum
packet size as an error. Such frames will not be seen by HOST software unless
the PAERPKEN bit is set in Mode Register – 1. If the PAERPKEN bit is set, the
JT1001 controller passes the packet to HOST software and sets the ERROR
and LGPK status bits in the packet’s receive header to indicate the packet
contains an error.

By setting the LGPKEN bit in Mode Register – 1, HOST software can modify
the JT1001 controller’s large packet processing. When LGPKEN is set, the
JT1001 controller does not regard a packet that exceeds the maximum packet
size as an error. In this case, the JT1001 controller passes large packets to
HOST software, regardless of the state of the PAERPKEN bit, and sets the
LGPK bit in the packet’s receive header.

3.4.5 Simultaneous Use of PDL, PDC, and PIO I/O Methods
The JT1001 controller supports the use of PDL and PDC I/O methods
simultaneously. When transferring data, HOST software indicates the desired
data transfer method by the CSR used to initiate the transfer. For packet
reception using the PDC I/O method, HOST software initiates the process by
writing to the Receive PDC Register. If the HOST wishes to receive a packet
using the PDL method, it writes to the Receive PDL Address Register instead.
JATO TECHNOLOGIES

3-27
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
Although intermixing of PDC and PDL receive commands is directly supported
by the JT1001 controller, intermixing of PIO with either PDC or PDL transfer
methods is not directly supported. It is possible to intermix PIO with the other
two transfer methods, however, careful coordination must be carried out to
prevent inadvertent simultaneous accesses by the JT1001 controller’s system
interface block and HOST software. More specifically, prior to initiating a receive
using the PIO method, HOST software must guarantee that all PDL and/or PDC
receive commands have been completely processed by the JT1001 controller.
A PDL and PDC receive command is considered completely processed when
the JT1001 controller has transferred the receive packet data from the JT1001
controller’s RX FIFO into HOST memory and incremented the RXDMDNCN
count in the Command Status Register.

3.5 PROGRAMMED INPUT/OUTPUT (PIO) METHOD OF RECEPTION

The pseudo-code in Table 3-5 demonstrates how to receive a packet using the
PIO data transfer method. Lines with an “@” in the right-hand column indicate
an access to the JT1001 controller.

Table 3-5. PIO Receive Pseudo-Code

(1) Function PIOProcessReceiveEvent()

(2) Read the RX FIFO Packet Count Register (CSR28) to see how many packets have
been received and save the result in ReceivePacketsAvailable.

@

(3) While (ReceivePacketsAvailable > 0)

(4) While (ReceivePacketsAvailable > 0)

(5) Read the RX FIFO Read Register (CSR24) to get the first DWORD of
the Receive Header.

@

(6) PacketLength = LEN field in the first DWORD of the Receive Header.

(7) Read the RX FIFO Read Register (CSR24) to get the second DWORD of
the Receive Header.

@

(8) Set NumDWORDS = (PacketLength + size of a DWORD – 1)/ size of a DWORD.

(9) Acquire a receive buffer large enough to hold NumDWORDS of receive data.

(10) If (no receive buffers are available)

(11) Set the RXFISKPK in the Command Register (CSR29) to skip the
partially read packet.

@

(12) Return (indicating out of receive buffer resources).

(13) Endif

(14) Set the ReceivePacketBuffer to the address of the receive buffer just allocated.

(15) For (NumDWORDS)

(16) Read a DWORD from the RX FIFO Read Register (CSR24) into
the ReceivePacketBuffer.

@

(17) Advance the ReceivePacketBuffer pointer by one DWORD.

(18) Endfor

(19) If (NumDWORDS is an odd number)

(20) Read a DWORD from the RX FIFO Read Register (CSR24) and discard
the value read. This is necessary to keep the FIFO QWORD aligned.

@

(21) Endif

(22) Call the protocol stack and give it the ReceivePacketBuffer.

(23) If (the protocol stack has copied the data)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-28

Theory of Operations
The PIO receive pseudo-code is very simple. The RXMS bit in the Interrupt
Mask Register is set at initialization time. Setting this bit causes the JT1001
controller to generate an interrupt each time a complete packet has been put in
the RX FIFO. Upon determining that an RXIN interrupt event has occurred, the
interrupt handler dispatches PIOProcessReceiveEvent().
PIOProcessReceiveEvent() uses the RX FIFO Read Register (CSR24) to read
the packet’s receive header from the FIFO. The receive header contains the
length of the packet. The function then performs an even number of DWORD
reads of CSR24 and puts the data read into HOST memory. The function
proceeds in this manner until the RX FIFO Packet Count Register (CSR28)
indicates no more packets are in the RX FIFO.

3.6 PACKET DESCRIPTOR LIST METHOD OF RECEPTION

The pseudo-code in Table 3-6 demonstrates how to receive a packet using the
PDL data transfer method. Lines with an “@” in the right-hand column indicate
an access to the JT1001 controller.

(24) Free the ReceivePacketBuffer.

(25) Endif

(26) Decrement the ReceivePacketsAvailable count.

(27) Endwhile

(28) Read the RX FIFO Packet Count Register (CSR28) to see how many packets have been
received and save the result in ReceivePacketsAvailable.

@

(29) Endwhile

(30) Return Success.

(31) Endfunction

Table 3-5. PIO Receive Pseudo-Code (Continued)

Table 3-6. PDL Receive Pseudo-Code

(1) Function PDLQueueReceiveCommand(PDL, ReceivePacketDescriptor)

(2) If (ReceiveCommandsAvailable = 0)

(3) Read RXCMFECN from the Command Status Register (CSR51). @

(4) If (RXCMFECN = 0)

(5) Return indicating no more receive commands are available.

(6) Else

(7) ReceiveCommandsAvailable = the value read from RXCMFECN.

(8) Endif

(9) Endif

(10) TotalLength = 0.

(11) PDLFragmentIndex = 0

(12) For (each fragment in the ReceivePacketDescriptor)

(13) If (the fragment is not in locked memory)

(14) Call the operating system to lock the memory.

(15) Endif

(16) If (the fragment address is a virtual address)

(17) Call the operating system to convert the virtual address to a list
of physical addresses.
JATO TECHNOLOGIES

3-29
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
The PDL receive pseudo-code uses the following variables to model the state
of the JT1001 controller’s receiver:

• ReceiveCommandsAvailable — This variable is the minimum number of
additional receive commands the JT1001 controller can take at any given
point in time. Each time a receive PDL command is given to the JT1001

(18) Endif

(19) For (each of the virtual fragment’s physical addresses)

(20) Set PDL.FGAD[PDLFragmentIndex] to the physical fragment address.

(21) Set PDL.FGLE[PDLFragmentIndex] to the number of bytes in
the physical fragment.

(22) TotalLength = TotalLength + the number of bytes in the physical fragment.

(23) Move to the next physical fragment in the physical address list.

(24) Increment PDLFragmentIndex.

(25) Endfor

(26) Endfor

(27) Set PDL.PKLE field to the TotalLength calculated.

(28) Set PDL.FGCN field to the number of fragments in the ReceivePacketDescriptor.

(29) Set the desired per packet processing options in the PDL header.

(30) Enqueue the PDL onto the ReceiveCommandsInProgressQueue.

(31) Write the MSD of the PDL’s physical address to Receive PDL Address MSD Register
 (CSR15)

@

(32) Write the LSD of the PDL’s physical address to Receive PDL Address LSD Register
(CSR14)

@

(33) Decrement the ReceiveCommandsAvailable count.

(34) Return Success.

(35) Endfunction

(36)

(37) Function PDLProcessReceiveEvent(ReceiveCommandsDone)

(38) While (ReceiveCommandsDone > 0)

(39) Dequeue the PDL from the ReceiveCommandsInProgressQueue.

(40) Get the ReceivePacketDescriptor corresponding to this PDL.

(41) Update the length fields in the ReceivePacketDescriptor to reflect the lengths
returned in the PDL.

(42) Examine the receive status codes in the PDL receive header and update the
ReceivePacketDescriptor as necessary.

(43) Call the protocol stack to give it the ReceivePacketDescriptor.

(44) Call the operating system to get another ReceivePacketDescriptor.

(45) Call PDLQueueReceiveCommand(PDL, ReceivePacketDescriptor).

(46) If (return code indicates no more receive command were available)

(47) Free the ReceivePacketDescriptor just allocated.

(48) Put the PDL back into the PDLAvailable pool.

(49) Endif

(50) Decrement ReceiveCommandsDone.

(51) Endwhile

(52) Return Success.

(53) Endfunction

Table 3-6. PDL Receive Pseudo-Code (Continued)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-30

Theory of Operations
controller, this count decrements. When it reaches 0, the count is refreshed
by reading the RXCMFECN field in the Command Status Register.

• ReceiveCommandsDone — This variable is effectively the RXDMDNCN
from the Command Status Register (CSR51). The RXDMDNCN is also
aliased into the Event Status Register (CSR32). Each time the Event Status
Register is read, the RXDMDNCN is added to ReceiveCommandsDone.
This determines how many items are taken off the
ReceiveCommandsInProgressQueue following an interrupt.

• ReceiveCommandsInProgressQueue — This is a FIFO queue of PDL
receive commands issued to the JT1001 controller. This queue preserves
the ordering in which the commands were issued to the JT1001 controller.
When a PDL receive command is given to the JT1001 controller, the PDL
is enqueued on this queue. PDLs are taken off this queue when an
RXDMDNIN interrupt occurs.

• ReceivePDLAvailableList — This is a list of PDLs that are available for
receiving packets. This pool of receive PDLs is allocated at initialization
time. Each time a packet is received using the PDL I/O method, a PDL is
removed from this list. PDLs are returned to this list after a PDL receive
command has completed and the received packet has been offered to the
protocol stack.

The PDLQueueReceiveCommand() performs the following tasks:

• Determines if the JT1001 controller can accept more receive commands.

• Prepares the fragments that constitute the receive buffer for the JT1001
controller. Preparing the fragments involves:

— Locking the fragments memory.

— Acquiring the physical addresses of the fragments.

• Constructs a pre-receive PDL using the physical addresses and lengths
of the fragments.

• Writes the physical address of the PDL to the JT1001 controller’s Receive
PDL Address Registers (CSR14 and CSR15).

PDLProcessReceiveEvent() is called by the interrupt handler when the JT1001
controller has completed the processing for one or more PDL receive
commands. ReceiveCommandsDone indicates the number of PDL receive
commands that have been completed. For each PDL receive command
completed, PDLProcessReceiveEvent performs the following tasks:

• Dequeues the PDL from the ReceiveCommandsInProgressQueue.

• Updates the receive descriptor associated with the PDL.

• Calls the protocol stack and gives it the receive descriptor for the received
packet. In this case the protocol owns the receive descriptor and is
responsible for freeing it.

• Constructs another a PDL receive command and issues it to the JT1001
controller.
JATO TECHNOLOGIES

3-31
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
3.6.1 Packet Propulsion Mode Method of Reception

3.6.1.1 PACKET PROPULSION MODE RECEIVE ALGORITHM

The pseudo-code in Table 3-7 demonstrates how to receive a packet using the
PDC data transfer method. Lines with an “@” in the right-hand column indicate
an access to the JT1001 controller.

Table 3-7. PDC Receive Pseudo-Code

(1) Function PDCQueueReceiveCommand(PDC)

(2) If (ReceiveCommandsAvailable = 0)

(3) Read RXCMFECN from the Command Status Register (CSR51). @

(4) If (RXCMFECN = 0)

(5) Return indicating no more receive commands are available.

(6) Else

(7) ReceiveCommandsAvailable = the value read from RXCMFECN.

(8) Endif

(9) Endif

(10) Construct the PDC Receive command with PDC length, PDC Buffer ID, and the desired
setting for RXINRQ.

(11) Enqueue the PDC on the ReceiveCommandsInProgressQueue.

(12) Write the command to Receive PDC Register (CSR17). @

(13) Decrement the ReceiveCommandsAvailable count.

(14) Return Success.

(15) Endfunction

(16)

(17) Function PDCProcessReceiveEvent(ReceiveCommandsDone)

(18) While (ReceiveCommandsDone > 0)

(19) Dequeue the PDC from the ReceiveCommandsInProgressQueue.

(20) ReceiveHeader = the virtual address of the PDC.

(21) Set the PDC’s use count = 0.

(22) For (each packet in the PDC)

(23) Get a ReceivePacketDescriptor from the operating system.

(24) If (no ReceivePacketDescriptors are available)

(25) If (PDC’s use count is non-zero)

(26) Put the PDC on the PDCLoanedToProtocolList.

(27) Else

(28) Put the PDC on the ReceivePDCAvailableList.

(29) Endif

(30) Return indicating packets were lost due to lack of HOST resources.

(31) Endif

(32) PacketLength = the ReceiveHeader.LEN field.

(33) Set the packet length in the ReceivePacketDescriptor to PacketLength.

(34) Set the fragment count in the ReceivePacketDescriptor to 1.

(35) Set the first fragment virtual address in the ReceivePacketDescriptor
to the packet’s first RXDATA byte in the PDC; i.e., the
CurrentPacketaddress of the first byte past the packet’s receive header in
the PDC.

(36) Examine the receive status codes in the packet’s PDC receive
header and update the ReceivePacketDescriptor as necessary.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-32

Theory of Operations
The PDC receive pseudo-code uses the following variables to model the state
of the JT1001 controller’s receiver:

• ReceiveCommandsAvailable — This variable is the minimum number of
additional receive commands the JT1001 controller can take at any given
point in time. Each time a receive PDC command is given to the JT1001
controller, this count decrements. When it reaches 0, the count is refreshed
by reading the RXCMFECN field in the Command Status Register.

• ReceiveCommandsDone — This variable is effectively the RXDMDNCN
from the Command Status Register (CSR51). The RXDMDNCN is also

(37) Advance the ReceiveHeader to the next packet in the PDC; i.e., the (sum
of ReceiveHeader + PacketLength + size of the receive header) rounded
up to the next QWORD boundary.

(38) Call the protocol stack to give it the ReceivePacketDescriptor.

(39) If (the protocol is not finished with the buffer)

(40) Increment the PDC’s use count.

(41) Endif

(42) Endfor

(43) If (PDC’s use count is not zero)

(44) Put the PDC on the PDCLoanedToProtocolList.

(45) Get another PDC from the ReceivePDCAvailableList

(46) Endif

(47) If (PDC pointer is not null)

(48) Call PDCQueueReceiveCommand(PDC) to queue up another receive
 command.

(49) If (the return code indicates no more receive commands are available)

(50) Put the PDC on the ReceivePDCAvailableList.

(51) Endif

(52) Endif

(53) Decrement ReceiveCommandsDone.

(54) Endwhile

(55) Return Success.

(56) Endfunction

(57)

(58) Function PDCReceiveDone(ReceivePacketDescriptor)

(59) Get the PDC that corresponds to the ReceivePacketDescriptor.

(60) Decrement the PDC’s use count.

(61) Free the ReceivePacketDescriptor.

(62) If (the PDC’s use count is zero)

(63) Remove the PDC from the PDCLoanedToProtocolList.

(64) Call PDCQueueReceiveCommand(PDC) to queue up another receive command.

(65) If (the return code indicates no more receive commands are available)

(66) Put the PDC on the ReceivePDCAvailableList.

(67) Endif

(68) Endif

(69) Endfunction

Table 3-7. PDC Receive Pseudo-Code (Continued)
JATO TECHNOLOGIES

3-33
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
aliased into the Event Status Register (CSR32). Each time the Event Status
Register is read, the RXDMDNCN is added to ReceiveCommandsDone.
This determines how many items are taken off the
ReceiveCommandsInProgressQueue following an interrupt.

• ReceiveCommandsInProgressQueue — This is a FIFO queue of PDC
receive commands issued to the JT1001 controller. This queue preserves
the ordering in which the commands were issued to the JT1001 controller.
When a PDC receive command is given to the JT1001 controller, the PDC
is enqueued on this queue. PDCs are taken off this queue when an
RXDMDNIN interrupt occurs.

• ReceivePDCAvailableList — This is a list of PDCs that are available for
receiving packets. This pool of receive PDLs is allocated at initialization
time. Each time a packet is received using the PDC I/O method, a PDC is
removed from this list. PDCs are returned to this list when the protocol
stack has finished processing all packets in the PDC and the JT1001
controller can not accommodate any more PDC receive commands.

• PDCLoanedToProcotolList — This is a list of PDCs whose use counts were
not zero when PDCProcessReceiveEvent finished processing the PDC.
This occurs if one or more packets contained in the PDC are still in use by
the protocol stack. The protocol stack calls the PDCReceiveDone()
function.

The PDCQueueReceiveCommand() performs the following tasks:

• Determines if the JT1001 controller can accept more receive commands.

• Enqueues the PDC to the ReceiveCommandsInProgressQueue.

• Writes the PDC’s buffer ID and length to the JT1001 controller’s Receive
PDC Register (CSR17).

PDCProcessReceiveEvent() is called by the interrupt handler when the JT1001
controller has completed the processing for one or more PDC receive
commands. ReceiveCommandsDone indicates the number of PDC receive
commands that have been completed. For each PDC receive command
completed, PDCProcessReceiveEvent performs the following tasks:

• Dequeues the PDC from the ReceiveCommandsInProgressQueue.

• Parses the PDC packet for the beginning of each packet received into the
PDC. For each packet in the PDC, it does the following:

— Allocates and initializes the receive descriptor to point to the data
in the PDC and include the receive status of the packet.

— Calls the protocol stack to give it the receive packet descriptor. In
this case, the protocol stack either completely processes the packet
before returning, or calls the PDCReceiveDone() at some later point
in time to indicate it has finished processing the packet.

• Maintains a use count for each PDC to keep track of how many packets
within the PDC are in use by the protocol stack. PDCs whose use count is
non-zero are added to the PDCLoanedToProcotolList.

• Calls PDCQueueReceiveCommand() to issue another PDC receive
command to the JT1001 controller.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-34

Theory of Operations
PDCReceiveDone() is called by the protocol stack to indicate it is finished
processing a received packet. The use count for the corresponding PDC is
decremented. If the PDC use count is zero, PDCReceiveDone() attempts to
issue another PDC receive command to the JT1001 controller.

3.7 INTERRUPT PROCESSING

3.7.1 Event Status Register
The Event Status Register acts as an accumulator of JT1001 controller events.
The JT1001 controller tracks the following categories of events in the Event
Status Register:

• Receive events.

• Transmit events.

• FIFO watermark events.

• Timer events.

As events occur, their corresponding event bits get set in the Event Status
Register. Event bits remain set until the register is read by HOST software. When
the Event Status Register is read, the JT1001 controller returns the current value
of the register to HOST software and then clears the register. Only the bits that
are read are cleared. In other words, if HOST software does a byte access to
the second byte in the Event Status Register, only that byte is cleared.

The Event Status Register has two special attributes. First, the high order byte
of the register is actually an alias for the RXDMDNCN in the Command Status
Register. When this field is read, the JT1001 controller automatically clears it in
both the Event Status Register and the Command Status Register.

Second, a read of this register also causes the INENMS bit in the Interrupt Mask
Register to be cleared if an interrupt is pending (i.e., the JT1001 controller’s
interrupt line is active). This has the effect of disabling the JT1001 controller’s
ability to generate further interrupts. It is the responsibility of HOST software to
re-enable the JT1001 controller’s ability to generate an interrupt by setting the
INENMS bit in the Interrupt Mask Register.

3.7.2 Interrupt Mask Register
The Interrupt Mask Register governs the JT1001 controller’s ability to generate
interrupts on the PCI bus. The INENMS bit in the Interrupt Mask Register is the
JT1001 controller’s master enable/disable switch for interrupt generation. If
INENMS is set, the JT1001 controller has the capability to generate an interrupt.
If INENMS is clear, the JT1001 controller can not generate an interrupt.

All other bits in the Interrupt Mask Register determine which events in the Event
Status Register generate an interrupt. For each event bit in the Event Status
Register, there is a corresponding interrupt mask bit in the Interrupt Mask
Register. If the INENMS bit is set and the event bit’s corresponding mask bit is
set in the Interrupt Mask Register, the JT1001 controller generates an interrupt
whenever the event bit gets set in the Event Status Register. Note that the
JATO TECHNOLOGIES

3-35
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
Interrupt Mask Register does not prevent bits from being set in the Event Status
Register, it merely determines which events cause the JT1001 controller to
generate an interrupt.

3.8 INTERRUPT HANDLER

The pseudo-code in Table 3-8 demonstrates a typical interrupt handler for
processing JT1001 controller interrupts.

Table 3-8. Interrupt Handler Pseudo-Code

(1) Function InterruptHandler(PDC)

(2) Read the Interrupt Mask Register (CSR30) and save it in InterruptMask. @

(3) If (the INENMS bit is not set)

(4) Return indicating the CONTROLLER did not generate the interrupt.

(5) Endif

(6) Read the Event Status Register (CSR32). NOTE: The act of reading CSR32 will clear the
INENMS bit in CSR30 if the CONTROLLER’s interrupt line is high when the read
occurs. This has the effect of disabling the CONTROLLER’s ability to generate
interrupts.

@

(7) EventStatus = EventStatus OR with the value just read from CSR30.

(8) If (using PDC or PDL method to receive packets)

(9) ReceiveCommandsDone = RXDMDNCN from EventStatus +
ReceiveCommandsDone.

(10) Endif

(11) If ((EventStatus AND InterruptMask) is zero)

(12) Return indicating the CONTROLLER did not generate the interrupt.

(13) Endif

(14) If (required by the operating system)

(15) Issue an EOI to the interrupt CONTROLLER.

(16) Enable interrupts at the CPU.

(17) Endif

(18) While (EventStatus AND InterruptMask) is not zero)

(19) If (using PDC method for receiving packets)

(20) Call PDCProcessReceiveEvent(ReceiveCommandsDone).
See Table 3-7

@

(21) Else If (using PDL method for receiving packets)

(22) Call PDLProcessReceiveEvent(ReceiveCommandsDone).
See Table 3-6

@

(23) Else using PIO method for receives

(24) If ((EventStatus AND RXIN) is not zero)

(25) Call PIOProcessReceiveEvent(). See Table 3-5 @

(26) Endif

(27) Endif

(28) If ((EventStatus AND TXDMDNIN) is not zero)

(29) TransmitCommandsDone = Read TXDMDNCN from the
Command Status Register (CSR51).

@

(30) While (TransmitCommandsDone > 0)

(31) Dequeue from the TransmitCommandsInProgressQueue.

(32) If (the item dequeued was a PDC)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-36

Theory of Operations
The interrupt handler pseudo-code above is designed to operate with the
initialization, transmit, and received pseudo defined earlier. It is intended to
demonstrate the fundamental organization of the interrupt handler. It is not
necessarily the optimal way to organize the interrupt handler.

The interrupt handler pseudo-code uses the following variables for interrupt
processing:

• InterruptMask — This variable is the value read from the Interrupt Mask
Register (CSR30). It is used to determine whether the JT1001 controller’s
master interrupt enable bit INENMS is set. InterruptMask is also used to
mask values read from the Event Status Register (CSR32).

• EventStatus — This variable accumulates events read from the Event
Status Register (CSR30). EventStatus is bitwise ORed with the initial read
of the Event Status Register in InterruptHandler(). EventStatus is set to the
value read from the Event Status Register each time InterruptHandler()
iterates through the event processing loop.

• ReceiveCommandsDone — This variable is the RXDMDNCN from the
Command Status Register (CSR51). It indicates the number of PDC or
PDL commands that the JT1001 controller has completed processing and
need to be processed by the driver.

• TransmitCommandsDone — This variable is the TXDMDNCN from the
Command Status Register (CSR51). Each time a TXDMDNIN occurs, the
TXDMDNCN field is read and its value is saved in
TransmitCommandsDone. This determines how many items are taken off
the TransmitCommandsInProgressQueue following a TXDMDNIN.

• TransmitCommandsInProgressQueue — This is a FIFO queue of PDL and
PDC commands issued to the JT1001 controller. This queue preserves the

(33) Call PDCTransmitDMADoneEvent(PDC).
See Table 3-4

(34) Else the item dequeued was a PDL

(35) Call PDLTransmitDMADoneEvent(PDL).
See Table 3-4.

(36) Endif

(37) Decrement the TransmitCommandsDone count.

(38) Endwhile

(39) Endif

(40) Read the Event Status Register (CSR32) and save the result in
EventStatus.

@

(41) If (using PDC or PDL method to receive packets)

(42) ReceiveCommandsDone = RXDMDNCN from EventStatus +
ReceiveCommandsDone.

(43) Endif

(44) Endwhile

(45) Enable CONTROLLER interrupt by setting INENMS in the Interrupt Mask
Register (CSR30).

@

(46) Return Success.

(47) Endfunction

Table 3-8. Interrupt Handler Pseudo-Code (Continued)
JATO TECHNOLOGIES

3-37
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
sequence and type of transmit commands issued to the JT1001 controller.
When a transmit PDL or PDC command is given to the JT1001 controller,
the PDL or PDC is enqueued on this queue. Items are taken off this queue
when a TXDMDNIN interrupt occurs.

InterruptHandler() is called by the operating system when the interrupt occurs
on the interrupt line for which the handler is registered. The interrupt handler
first determines whether the JT1001 controller generated the interrupt. To
determine this, it reads the Interrupt Mask Register (CSR32) and checks the
INENMS bit. If INENMS is clear, the JT1001 controller did not generate the
interrupt so the interrupt handler exits. If the INENMS is set, HOST software
must then read the Event Status Register and bitwise AND the value read with
the value read from the Interrupt Mask Register. If the result is of this operation
is non-zero, the JT1001 controller generated the interrupt, otherwise some other
device generated the interrupt.

It is important to note that the value read from the Event Status Register, when
determining whether the JT1001 controller generated the interrupt, must be
saved even if the JT1001 controller did not generate the interrupt. This is
necessary because of the clear after read nature of the Event Status Register.
The value read from the Event Status Register is bitwise ORed with the
EventStatus variable, even when the JT1001 controller did not generate the
interrupt. This prevents the loss of JT1001 controller events for which the JT1001
controller is not configured to generate an interrupt. For similar reasons, if the
driver is using PDL or PDC mode to receive frames, the RXDMDNCN read from
the Event Status Register is added to ReceiveCommandsDone.

Once the InterruptHandler() has determined the JT1001 controller generated
an interrupt, it proceeds to the event processing loop. For each iteration of the
loop, the appropriate event processing occurs for each bit set in EventStatus.
At the bottom of the loop, the Event Status Register is read again and
EventStatus and ReceiveCommandsDone are updated. The InterruptHandler()
continues looping until EventStatus and ReceiveCommandsDone are 0.

Note that this implementation of the interrupt handler checks to see the type of
receive I/O method being used for receive, because the driver implements all
three modes. Typically, a driver implements a single receive I/O method that is
optimal for the target operating system. In this case, the check to determine the
receive I/O method being used is unnecessary.

3.9 VLAN SUPPORT

The JT1001 controller provides the following VLAN IEEE 802.1Q support with
the following functionality:

• VLAN tag insertion.

• VLAN tag removal.

• VLAN tag packet filtering.

A VLAN tag is 4 bytes long and consists of a 2-byte protocol ID Þeld followed
by a 2-byte tag control information (TCI) Þeld. The TCI Þeld is divided into a 3-bit
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-38

Theory of Operations
user priority Þeld, a 1-bit canonical format identiÞer (CFI) Þeld, and a 12-bit VLAN
IdentiÞer (VLID) Þeld. VLAN tag headers are located at bytes offset 12 Ð 15 in
a packetÕs MAC header (i.e., between the source address Þeld and length/type
Þeld). The protocol ID Þeld is used by the JT1001 controller for VLAN tag
insertion and Þltering. Its value can be conÞgured by HOST software using the
VLAN Tag Protocol ID Register. The JT1001 controller also provides a 16-entry
table for TCIs. The VLAN Tag TCI table is used by the JT1001 controller for
VLAN tag insertion and Þltering. HOST software adds and deletes entries in the
table using the VLAN Tag TCI Table Register.

Figure 3-5. VLAN Header Format

The VLEN bit in Mode Register Ð 1 is the master enable/disable bit for the
JT1001 controllerÕs VLAN support. By default the VLEN bit is clear, meaning
the JT1001 controllerÕs VLAN support is disabled. When the VLEN bit is set,
the JT1001 controllerÕs VLAN support is enabled and HOST software can then
independently conÞgure and enable the three functions described above.

The JT1001 controllerÕs VLAN tag insertion function can operate in two different
modes: global and per-packet. In global mode, the JT1001 controller inserts a
VLAN tag header in all packets transmitted. The JT1001 controller constructs
and inserts a VLAN tag using the value in the VLAN Tag Protocol ID Register
and the value in the Þrst (0) entry of the VLAN Tag TCI Table. HOST software
enables the global mode of VLAN tag insertion by setting the VLEN and VLISGB
bit in Mode Register Ð 1.

Per-packet VLAN tag insertion gives HOST software the capability to request
the VLAN tag insertion on a per-packet basis. First, the VLEN bit must be set.
HOST software then sets the VLIS bit in the packetÕs transmit header to indicate
the VLAN tag header is to be inserted. When VLIS is set, HOST software must
also set the VLTBIX Þeld in the packetÕs transmit header. The VLTBIX Þeld is
an index into the VLAN Tag TCI Table. The JT1001 controller constructs and
inserts the VLAN tag header using the value in the VLAN Tag Protocol ID
Register and the TCI information using the VLAN Tag TCI Table entry speciÞed
by VLTBIX.

HOST software can mix the global and per-packet tag insertion modes by setting
the VLISGB in Mode Register Ð 1 and then setting the VLIS bit in the transmit
header of selected packets. In this case, the VLIS prevails and the JT1001
controller constructs and inserts a VLAN tag header using the per-packet
method.

The JT1001 controllerÕs VLAN tag removal support can be enabled by setting
the VLEN and VLRMID bits in Mode Register Ð 1. When enabled, the JT1001
controller parses inbound packets for a VLAN tag header. If a VLAN tag header
is found, it is removed from the packet prior to being put into the RX FIFORX

3
1

1
6

1
5

1
3

1
2

1
1

0
0

Protocol ID (PID)
User

Priority

C
F
I

VLAN Identifier (VLID)
JATO TECHNOLOGIES

3-39
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
FIFO. Consequently, the VLAN tag is never seen by HOST software. When the
JT1001 controller removes a VLAN tag header from a packet, the CRC is always
removed too, regardless of the state of the PACREN bit in Mode Register Ð 1.
The CRC is removed because it is no longer valid since the VLAN tag is included
in the CRC calculation.

Finally, the JT1001 controller can Þlter inbound packets that contain a VLAN
tag header. The VLAN tag Þlter affects received packets that contain a VLAN
header. When conÞgured by HOST software, the VLAN tag Þlter forwards
packets containing a VLAN header whose protocol ID matches the value set in
the VLAN Tag Protocol ID Register and whose VLID Þeld matches the VLID of
an entry the VLAN Tag Table. This feature is enabled by setting the VLTBEN bit
in Mode Register Ð 1. When the VLAN tag Þlter is enabled, the JT1001 controller
provides additional receive status information in the packetÕs PIO/PDL/PDC
receive header. In particular, the JT1001 controller sets the VLHT bit in the
receive header of packets that contain a VLAN tag header that passed the VLAN
tag Þlter. The JT1001 controller also puts the index of the matching VLAN Tag
TCI Table entry in VLTBIX Þeld of the receive header.

3.10 TCP/IP CHECKSUM SUPPORT

The JT1001 provides advanced capabilities for processing TCP/IP checksums.
The JT1001 controller can calculate and insert IP, TCP, and UDP checksums
during packet transmission and verify IP, TCP, and UDP checksums during
packet reception. The JT1001 controller overlaps the checksum processing with
packet transmission and reception. The JT1001 controller’s TCP/IP checksum
capabilities increase system performance by overlapping checksum processing
with the packet transmission/reception and by relieving the HOST CPU of the
checksum calculation and verification tasks.

The JT1001 controller’s ability to calculate and insert a checksum to a packet
during packet transmission can be enabled independently for IP, TCP, and UDP.
Setting the TXIPCKEN bit in Mode Register – 2 enables IP checksum insertion.
When set, the JT1001 controller inserts the IP checksum into all outbound
packets that contain an IP version 4 header. Alternatively, HOST software can
choose to insert the checksum on a per-packet basis by clearing the TXIPCKEN
bit and setting the IPCKIS bit in the packet’s PIO/PDL/PDC transmit header.
The TXTPCKEN and TXUPCKEN bits in Mode Register – 2 enable the TCP
and UDP checksum calculation and insertion on a global basis. The TPCKIS
and UPCKIS bits in the packet’s PIO/PDL/PDC transmit header cause the TCP
and UDP checksums to be calculated and inserted on a per-packet basis.

There are three bits in Mode Register – 2 that enable/disable the JT1001
controller’s ability to verify TCP/IP checksums in received packets. Setting the
RXIPCKEN bit in Mode Register – 2 causes the JT1001 controller to verify the
IP checksum for all inbound packets containing an IP header. If the checksum
fails, the JT1001 controller sets the IPCKER status bit in the packet’s
PIO/PDL/PDC receive header. If the checksum is valid or the packet does not
contain an IP header, the IPCKER bit will be clear in the receive header. The
JT1001 controller handles checksums for TCP and UDP in a similar manner.
The RXTPCKEN and RXUPCKEN bits in Mode Register – 2 enable the TCP
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-40

Theory of Operations
and UDP checksum verification. The TPCKER and UPCKER bits in the packet’s
PIO/PDL/PDC receive header will be set if a TCP or UDP checksum error occurs.

Finally, the action the JT1001 controller takes for packets containing TCP/IP
checksum errors is governed by the PACKEREN bit in Mode Register – 2. When
PACKEREN is set, received packets containing TCP/IP checksum errors are
passed to HOST software. When clear, the packets are discarded by the JT1001
controller.

3.10.1 EEPROM Support
The JT1001 provides a 93C46 compatible EEPROM interface. EEPROM is used
as a convenient nonvolatile store of JT1001 controller parameters. In particular,
EEPROM is used to store the JT1001 controller’s Universally Administered
Address (UAA), PCI configuration space defaults, and overrides for some CSR’s
default values. EEPROM can also be used by HOST software as a nonvolatile
store for software configuration parameters. Typically, EEPROM is accessed
following a JT1001 controller reset or by HOST diagnostic software.

Following a JT1001 controller hard or soft reset, the JT1001 controller reads
EEPROM and overwrites the CSRs. See Figure 7-1 to determine which CSRs
are overwritten following a reset. When reloading CSRs from EEPROM, the
JT1001 controller calculates a 32-bit checksum and compares the checksum
against the checksum value stored in EEPROM. If an incorrect checksum is
obtained, the JT1001 controller restores CSRs overwritten by EEPROM to their
default values.

HOST software can access EEPROM using the EEPROM and EEPROM Data
Registers on an individual DWORD basis. Although EEPROM is organized
internally as 16-bit words, the JT1001 controller presents the EEPROM contents
as 32-bit DWORDs to HOST software. The JT1001 controller accomplishes this
by combining two EEPROM 16-bit words into a 32-bit big endian DWORD.

Since the JT1001 controller can operate without EEPROM, HOST software must
determine if EEPROM is present prior to accessing it. If EEPROM is present,
the JT1001 controller sets the EEPMPN bit in the EEPROM Register. To read
a value from EEPROM, HOST software sets EEAD in the EEPROM Register
to the index of the EEPROM DWORD to be read. It then sets EERDCM and
EESL bits in the EEPROM Register to initiate the read command. HOST
software must then poll the EESL bit to await the completion of the EEPROM
read command. The JT1001 controller clears the EESL bit after completing the
read command. HOST software can then read the value from the EEPROM
Data Register.

To write a value to EEPROM, HOST software first writes the value to be written
to EEPROM to the EEPROM Data Register. Next, HOST software sets EEAD
in the EEPROM Register to the index of the EEPROM DWORD to be written.
It then sets EEWTCM and EESL bits in the EEPROM Register to initiate the
write command. HOST software must then poll the EESL bit to await the
completion of the EEPROM write command. The JT1001 controller clears the
EESL bit after completing the write command. If HOST software writes a value
in EEPROM, it must also recalculate and write the new checksum value to
EEPROM.
JATO TECHNOLOGIES

3-41
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
3.11 EXPANSION ROM SUPPORT

The JT1001 provides an expansion ROM interface. If present, the expansion
ROM contains an executable image that is invoked by the HOST system’s BIOS
during the boot process. An expansion ROM attached to the JT1001 typically
contains an executable image that allows the network connection to be the boot
device (i.e., the device from which the operating system is loaded). The JT1001
expansion ROM interface supports EPROM and flash devices.

HOST BIOS detects the presence and size of the expansion ROM using the
Expansion ROM Base Address Register at offset 30h in the PCI Configuration
space. If the expansion ROM is present, HOST BIOS maps the expansion ROM
into the HOST’s memory address space by writing at the base address to the
Expansion ROM Base Address Register. Due to the slow access times for
expansion ROM devices, BIOS shadows (i.e., copies) the expansion ROM
image into system RAM. When BIOS executes the expansion ROM image, it
executes the expansion ROM image copied to RAM.

Once BIOS has mapped expansion ROM into HOST memory address space,
HOST software can read the expansion ROM just as it reads any other memory
location. HOST software can read the expansion ROM using 8-, 16-, and 32-bit
memory accesses. Due to the slow access times of most flash devices, however,
HOST software should avoid 32-bit read accesses after system initialization
time to ensure the PCI 16- and 8-clock bus holding rules are not violated. The
PCI specification allows the bus holding rules to be violated during system
initialization so expansion ROMs can be shadowed to system RAM using 32-bit
accesses.

If the expansion ROM is a flash device, HOST software can also perform
memory writes to the device. HOST software can determine whether a flash
device is present by checking the FLPN bit in the EEPROM Register. To enable
writing to the flash device, HOST software must first set the FLWTEN bit in the
EEPROM Register. HOST software then writes to the flash device using 8-bit
accesses. Due to the slow access times of most flash devices, HOST software
should avoid 16- and 32-bit write accesses to ensure the PCI 16- and 8-clock
bus holding rules are not violated. If either the FLPN or FLWTEN bits are clear,
write accesses to the expansion ROM do not change the contents of the
expansion ROM.

3.11.1 Magic Packet Wake Up
The JT1001 supports wake up via Magic Packet technology. Magic Packet
technology, developed by Advanced Micro Devices, allows a computer system
in a low or no power state to be restored to a full power state remotely via
network. This is accomplished by sending a packet containing a specific data
sequence. This is referred to as a Magic Packet data sequence. The JT1001
requires the power to be supplied to the JT1001 controller via the PCI bus,
however, all other components in the computer system can be in a low or no
power state.

In order for a packet to be considered a Magic Packet data sequence, it must
meet the following criteria:
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-42

Theory of Operations
• It must contain a valid 14-byte MAC header; i.e., 6-byte destination address,
6-byte source address, and 2-byte length/type field. The destination
address can be a unicast, multicast, or broadcast address.

• The packet must be have a valid CRC and be at least the minimum frame
size in length.

• The LLC data portion of the packet must contain a 6-byte preamble 0xFF,
followed by 16 repetitions of the JT1001 controller’s MAC address. The
preamble and MAC address repetitions must be contiguous. The sequence
itself can begin at any offset within the LLC data.

It is necessary to permit Magic Packet data sequences to contain a multicast
or broadcast destination address to ensure the computer is reachable through
routers. Some protocols cause routers to discard the unicast MAC address of
a computer from their routing tables when the computer is powered off. In such
instances, a Magic Packet data sequence containing a unicast destination
address can not be routed to the computer. A Magic Packet data sequence
containing a broadcast or multicast address, however, can always be routed to
a computer and, therefore, allow the computer to be successfully awakened.

The JT1001 controller is put into Magic Packet mode by setting the MGPKEN
bit in Mode Register – 1. When a Magic Packet data sequence is received, the
RXMGPKIN bit is set in the Event Status Register. If the RXMGPKMS and
INENMS bit are set in the Interrupt Mask Register, an interrupt on the PCI bus
is generated.

The reception of a Magic Packet data sequence can also cause the system to
wake up via the power management event (PME) pin. In a computer that
supports PCI power management, assertion of the PME causes the system to
return to a fully powered state. Although the PME pin is defined by the PCI power
management specification, the output of this pin can be routed to the wake up
circuitry of a computer that does not support PCI power management. The
following section discusses how to configure the JT1001 controller such that a
Magic Packet data sequence results in the PME pin being asserted.

3.12 PCI POWER MANAGEMENT

The JT1001 complies with the PCI Power Management Interface Specification,
Rev. 1.0. This specification defines a set of PCI configuration space registers
used to query a PCI device’s power management capabilities, and query and
set its power management state. Additionally, a PME pin is defined for signaling
wake up events to the computer system. System-level software uses these
interfaces to manage the power state of the PCI devices. Refer to the PCI Power
Management Specification, Rev. 1.0, for a detailed description of these registers
and pin.

The JT1001 supports power management in the following manner:

¥ Supports device power states D0, D3hot, and D3cold.

¥ No explicit action is taken to power down blocks within the JT1001
controller. Power savings occur because the PCI block and MAC will not
put data into the Tx and RX FIFOs during the D3hot state.
JATO TECHNOLOGIES

3-43
JT1001 Software Reference Manual - Rev. 0

Theory of Operations
¥ PME assertion can occur due to Magic Packet data sequence frame
recognition during either the D0 or D3hot power states.

¥ PCI ConÞguration space accesses are enabled while in the D0 and D3hot
power state.

¥ Interrupts, PCI memory transactions, and PCI I/O transactions are disabled
in D3hot.

¥ The Power Management Register Block is implemented in the PCI
conÞguration space.

The PME_En bit in the Power Management Control/Status Register (PMCSR)
governs whether or not a Magic Packet event results in the PME pin being
asserted. The MGPKEN enable bit in CSR 00 enables the Magic Packet
detection logic in the MAC. For a Magic Packet data sequence to be detected
and cause PME to be asserted, both the MGPKEN bit in CSR 00 and the
PME_En bit in PMCSR must be set. When these bits are set and a Magic Packet
data sequence is received, the PME pin is asserted and the JT1001 controller
resets itself as if a PCI RST had occurred, with one exception: the PME context
is preserved across the reset. The PME context is defined as the state of all bits
in the Power Management Control/Status Register and the state of the PME
pin. The PME will remain asserted until either the PME_Status bit or the PME_En
bit is cleared by software.

3.13 PRE-FETCHING

Although memory mapped I/O is supported by the JT1001, I/O pre-fetching is
not. Consequently, memory areas allocated to JT1001 controller I/O must not
be cached.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
3-44

Section 4
PCI Configuration Registers

Figure 4-1. PCI Configuration Space Register Map

00h Device ID
(0001h)

Vendor ID
(1308h)

04h Status
(00B0h)

Command
(0000h)

08h Class Code
(020000h)

Revision ID
(00h)

0Ch BIST
(00h)

Header Type
(00h)

Latency Timer
(0Dh)

Cache Line Size
(00h)

10h Base Address Register 0: 32-bit I/O base address
(00000001h)

14h Base Address Register 1: 64-bit non-prefetchable memory base address – LSD
(00000004h)

18h Base Address Register 2: 64-bit non-prefetchable memory base address – MSD
(00000000h)

1Ch Base Address Register 3: Not used by JT1001.
(00000000h)

20h Base Address Register 4: Not used by JT1001.
(00000000h)

24h Base Address Register 5: Not used by JT1001.
(00000000h)

28h Cardbus CIS Pointer: Not used by JT1001.
(00000000h)

2Ch Subsystem ID
(0001h)

Subsystem Vendor ID
(1308h)

30h Expansion ROM Base Address
(00000000h)

34h Reserved
(0000000h)

Capabilities Ptr
(44h)

38h Reserved
(00000000)

3Ch Max_Lat
(00h)

Min_Gnt
(00h)

Interrupt Pin
(01h)

Interrupt Line
(00h)

40h Reserved
(0000h)

Retry Timeout
(00h)

TRDY Timeout
(00h)

44h Power Management Capabilities Register
(4801h)

Next Item Ptr
(00h)

Power Mgmt Cap. ID
(01h)

48h Reserved
(0000h)

Power Management Control/Status Register
(0000h)

4Ch –
FFh

Reserved
(00000000h)

Loaded from EEPROM

Device Dependent Region
JATO TECHNOLOGIES

4-1
JT1001 Software Reference Manual - Rev. 0

PCI Configuration Registers
In Figure 4-1, default values following PCI RST appear in parenthesis. The
default values for registers loadable from EEPROM become overridden by
values specified in EEPROM when EEPROM is present and functioning. Refer
to the PCI 2.1 Specification for a detailed description of the PCI configuration
registers. Refer to the PCI Bus Power Management Interface Specification,
Rev, 1.0, for a detailed description of the PCI configuration registers specific for
power management.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
4-2

Section 5
Command and Status Registers
This section presents the details of the register interface to the JT1001. The
information is arranged in tabular form with the following format:

The individual columns of the table have the following significance:

Bit Field — Indicates the start and end bit position of a field of bits. The most
significant bit position is listed first, followed by a colon character (“:”) and the
least significant bit position of the field within the register. For single bit fields,
the position number is listed without the ensuing colon and end bit identifier. For
example, 20:17 identifies a bit field that is 4 bits wide. The most significant bit
is bit 20, and the least significant bit is bit 17. Bit 20 represents a value of 23
and bit 17 represents a value of 20.

Type — The type field can contain a series of single letter identifiers that denote
the behavioral attributes of specific bit fields within a register. The identifiers are
concatenated together to denote the attributes that apply to the given bit field.
Acceptable type designators are:

• R — Read.

• W — Write.

• A — Auto Clear. (Auto Clear implies the field is readable.)

• C — Clear after read.

E2 — This column is used to denote if the field’s initial value is to be obtained
from the serial EEPROM. If a field’s initial value is obtained from EEPROM, a
check mark (√) is placed in this column. Otherwise, an x mark (x) is placed in
the column.

Mnemonic — Values in this column provide symbolic names for the
corresponding field. The mnemonics are constructed to aid in the pronunciation
of the field’s name. Generally, mnemonics are two characters in length and are
concatenated to form a single symbol. For example, the mnemonic BFAD is
comprised of the two sub-mnemonics BF which represents the word buffer and
AD which represents the word address. Together, they symbolize a buffer
address. Each mnemonic used in this document is listed in the Glossary,
Section 8.

Bit Field Type E2 Mnemonic
Default
Value

Description
JATO TECHNOLOGIES

5-1
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
Default Value — The Default Value column denotes the value the register will
assume once the JT1001 controller has been powered up and placed into its
start state. Fields that are initialized from EEPROM also have a default value.
In these cases, the default value is applied prior to EEPROM being read. This
method provides a means for the chip to initialize even if the EEPROM should
fail, or if an EEPROM is not desired.

Description — The Description column provides a brief explanation of the field
and its usage.

One important aspect of the register interface is that it is inherently a 32-bit
interface. This is due to the PCI’s use of a 32-bit I/O path despite its support for
64-bit data and address paths for memory cycles. The net result of this design
attribute of the PCI bus is that 64-bit address registers implemented in the
JT1001 controller must be accessed with two 32-bit I/O cycles. To avoid race
conditions when writing to 64-bit registers, a policy is adopted by the JT1001
controller whereby it only examines the contents of a 64-bit register once the
least significant DWORD (LSD) is written. To help clarify the policy, consider the
case where a 64-bit register is maintained by the JT1001 controller and is
updated by HOST software. The HOST begins by writing the MSD register. After
the MSD is written, the HOST writes the LSD. This policy brings about two
noteworthy behaviors. First, it eliminates the potential for a race condition
between the HOST and the JT1001 controller. Second, it provides a means by
which 64-bit registers can be updated with single 32-bit writes. For example,
when initializing the PDC Buffer Address Table (which requires 64-bit physical
addresses for PDC data buffers), HOST software can write the contents of the
Transmit PDC Buffer Address MSD Register prior to initializing the table.
Subsequently, the HOST software can consecutively write the LSDs of the PDC
buffer addresses to the register without further manipulation of the MSD register.
This technique works because the MSDs of the addresses of PDC data buffers
are almost certainly the same for all PDC data buffers allocated by HOST
software. Once this MSD is written to the Transmit PDC Buffer Address MSD
Register, it is read by the JT1001 controller each time the LSD register is written.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-2

Command and Status Registers
CSR 00 MODE REGISTER – 1
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

L
N
C
K
E
N

U
S
P
I
M
D
1

U
S
P
I
M
D
0

V
L
I
S
G
B

V
L
R
M
I
D

V
L
T
B
E
N

V
L
E
N

S
E
R
E
C
L

R
X
F
L
C
T
E
N

M
G
M
C
B
C
E
N

M
G
P
K
E
N

D
B
M
D
E
N

T
X
C
R
E
N

P
A
E
R
P
K
E
N

P
A
C
R
E
N

S
E
R
E
C
L

L
G
P
K
E
N

U
C
E
N

P
O
E
N

B
C
E
N

M
C
E
N

R
X
E
N

T
X
E
N

S
E
R
E
C
L

R
M
P
P
E
N

T
X
P
P
E
N

G
M
S
T
P
O
E
N

R
X
T
R
P
R

T
X
F
L
C
T
E
N

D
E
B
T
O
D

S
W
R
E

S
E
R
E
C
L

Bit
Field Type E2 Mnemonic

Default
Value Description

0 W x SERECL 0 Set/Reset Control. Set/reset control bit for
bits[7:1].

1 WA x SWRE 0 Soft Reset. When set, the JT1001 controller
resets all internal hardware with the exception of
the PCI configuration registers. This bit remains
set for the duration of the reset. Upon completion
of the reset, the JT1001 controller automatically
clears this bit. HOST software can poll this bit to
determine when the reset has completed.

2 RW √ DEBTOD 0 Descriptor Byte Ordering. 0 = Little Endian, 1 =
Big Endian

3 RW √ TXFLCTEN 1 Transmit Flow Control Enable. When set, the
JT1001 controller automatically constructs and
transmits a PAUSE frame when the RX FIFO hits
the high and low watermarks specified in the
Flow Control Watermark Register.

When clear, the JT1001 controller does not
automatically construct and transmit PAUSE
frames.

4 RW √ RXTRPR 0 Receive/Transmit Priority. Bus arbitration priority
between receive and transmit. When set, the
JT1001 controller uses a round-robin arbitration
scheme between receive and transmit (equal
priority). When reset, receive has an 8:1 priority
over transmit.

5 RW √ GMSTPOEN 0 G/MII Status Polling Enable. When set, the
JT1001 controller periodically queries the PHY to
determine if a status change has occurred. If a
status change has occurred, the JT1001
controller sets the PHLASTIN bit in the Event
Status Register.

When clear, the JT1001 controller does not query
the PHY for a status change. HOST software can
perform this operation manually via the G/MII
PHY Access Register.

6 RW √ TXPPEN 1 Transmit Packet Pad Enable. When set, the
JT1001 controller pads a transmit packet to the
minimum frame size. The minimum frame size for
ethernet is 60 bytes, excluding the CRC and
VLAN tag field.
JATO TECHNOLOGIES

5-3
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
7 RW √ RMPPEN 1 Remove Packet Pad Enable. When set, the
JT1001 controller strips pad bytes in a received
packet that contains a length field in the MAC
header that has a value less than 46 decimal.
Pad bytes are defined as bytes following the end
of the LLC data field but before the CRC. Since
stripping the pad bytes renders the CRC invalid, it
is also stripped (regardless of the state of
PACREN).

When the RMPPEN bit is clear, the JT1001
controller does not strip pad bytes in received
packets.

The JT1001 controller does not strip pad bytes
from packets that contain a type in the MAC
header instead of a length. A MAC header has a
type field if the value in the length/type field is
greater than 1536 bytes.

8 W x SERECL 0 Set/Reset Control. Set/reset control bit for
bits[15:9].

9 RW x TXEN 0 Transmitter Enable. When set, the JT1001
controller can perform transmits. When reset, the
JT1001 controller will not perform transmits. If a
packet transmission is in progress, the JT1001
controller will complete it and stop.

10 RW x RXEN 0 Receiver Enable. When set, the JT1001
controller can perform receives. When reset, the
JT1001 controller will not perform receives. If a
packet reception is in progress, the JT1001
controller will complete it and stop.

11 RW x MCEN 0 Multicast Enable. When set, the JT1001
controller will accept a packet with a multicast
destination address that matches in the Multicast
Hash Table Register.

12 RW x BCEN 0 Broadcast Enable. When set, the JT1001
controller will accept a packet with a broadcast
destination address.

13 RW x POEN 0 Promiscuous Mode Enable. When set, all packets
will pass the JT1001 controller’s destination
address filter, regardless of the settings of UCEN,
MCEN, and BCEN. Packets, however, are still
subject to the JT1001 controller’s other reception
filters. To cause the JT1001 controller to accept
all packets without modification, HOST software
must set the POEN, PAERPKEN, and PACREN
bits in Mode Register – 1, and clear the VLTBEN,
VLRMID, and RMPPEN bits in Mode
Register – 1.

14 RW x UCEN 1 Unicast Mode Enable. When set, the JT1001
controller will accept frames in which the
destination address matches the JT1001
controller’s unicast address; i.e., the address set
in the LAN Physical Address Register (CSR 42).
When reset, frames with the destination
addresses matching the station’s unicast address
will not be accepted.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-4

Command and Status Registers
15 RW √ LGPKEN 0 Large Packet Enable. This bit determines how the
JT1001 controller processes packets that exceed
the maximum packet size.

When the LGPKEN bit set, the JT1001 controller
receives the packets that exceed the maximum
packet size into the RX FIFO and sets the LGPK
bit in the receive header. The Large Packet Count
is incremented.

When the LGPKEN bit is clear, the JT1001
controller treats packets that exceed the
maximum packet size as an errored packet. If the
PAERPKEN bit is clear, the JT1001 controller
discards the packet. If the PAERPKEN bit is set,
the JT1001 controller receives the packet into the
FIFO and sets the LGPK and ERROR bits in the
receive header. Regardless of the state of
PAERPKEN, the JT1001 controller increments
the Large Packet Count and Errored Packet
Count.

The maximum packet size used by the JT1001
controller varies depending on the state of the
VLEN bit. If VLEN is clear, the maximum packets
size is 1518 bytes (including CRC). If VLEN is
set, the maximum packet size is increased to
1522 bytes to allow for the 4-byte VLAN header.

16 RW x SERECL 0 Set/Reset Control. Set/reset control bit for
bits[23:17].

17 RW x PACREN 0 Pass CRC Enable. When set, this bit indicates to
the JT1001 controller that the HOST software
wishes to receive each frame’s CRC field. On
reception, the only time this bit is defined, the
inbound frame’s CRC field is transferred to
receive buffers as it appears on the wire. Receive
buffers are expected to be sufficiently large to
accommodate the CRC. If not, a HOST buffer
overflow error occurs.

Regardless of the state of PACREN, the JT1001
controller does not pass the CRC of packets from
which it has removed the packet padding or a
VLAN header. Since these fields are included in
the CRC calculation, the CRC is no longer valid
after the JT1001 controller has removed them.
Therefore, the JT1001 controller does not pass
the CRC in this case.

18 RW x PAERPKEN 0 Pass Errored Packet Enable. When set, this bit
indicates to the JT1001 controller that the HOST
software wishes to receive errored packets. The
errored packets are deposited (as best they can
be) into HOST receive buffers and appropriate
error bits are set in the receive header status
fields.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIES

5-5
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
19 RW x TXCREN 1 Transmit CRC Enable. When set, the JT1001
controller will generate and append a CRC to
transmitted packets. When clear, the JT1001
controller does not generate or append the CRC
to transmitted packets.

Clearing the TXCREN bit can conflict and cause
undefined behavior when other mode settings
that cause the JT1001 controller to insert or
modify packet data prior to the packets
transmission. In particular, enabling the padding,
VLAN tag insertion, or TCPIP checksum features
when the TXCREN bit is clear, results in the
packet being transmitted with a invalid CRC.

20 RW √ DBMDEN 0 Debug Mode Enable. This bit enables (DBMDEN
= 1) or disables debug mode.

21 RW √ MGPKEN 0 Magic Packet Enable. This bit enables the
JT1001 controller’s ability to recognize a Magic
Packet recognition and generate a wake up
signal.

22 RW √ MGMCBCEN 0 Magic Packet Multicast/Broadcast Enable. When
clear, the JT1001 controller only accepts Magic
Packet data sequences with a destination
address that matches the LAN Physical Address
CSR.

When this bit is set, the JT1001 controller
accepts Magic Packet data sequences whose
destination address is a unicast, multicast
address enabled via the Multicast Hash Table
Register, or is an all stations broadcast.

23 RW √ RXFLCTEN 1 Receive Flow Control Enable. This bit enables
the JT1001 controller’s ability to detect and act
upon the reception of a MAC Control PAUSE
frame.

When this bit is set and the link is a full-duplex
connection, the JT1001 controller will disable the
transmitter when a MAC Control PAUSE frame is
received. The JT1001 controller will re-enable the
transmitter after the duration of time specified in
the PAUSE frame has elapsed. If another PAUSE
frame is received before time has elapsed, the
JT1001 controller will reset its timer to the value
specified in the subsequent PAUSE frame.

When clear, the JT1001 controller will ignore
PAUSE frames.

24 W x SERECL 0 Set/Reset Control. Set/reset control bit for
bits[31:25].

25 RW √ VLEN 0 VLAN Enable. When set, the JT1001 controller’s
VLAN support is enabled. When clear, VLAN
support is disabled.

26 RW √ VLTBEN 0 VLAN Tag Table Enable. This bit enables/disables
the JT1001 controller’s VLAN receive filter. The
VLAN receive filter is applied to packets that
contain a VLAN header and have already passed
the destination address filter.

When this bit is set, the JT1001 controller only
accepts packets whose VLAN IDs are found in
the VLAN register table.

If VLTBEN is clear, the JT1001 controller accepts
all VLAN frames that pass the destination
address filter.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-6

Command and Status Registers
27 RW √ VLRMID 0 VLAN Remove ID. When set, the JT1001
controller removes the VLAN header from
received packets.

When clear, the JT1001 controller does not
remove the VLAN header from packets.

28 RW √ VLISGB 0 VLAN Insert Global. When set, the JT1001
controller inserts the global VLAN header prior to
transmitting a packet. The VLAN header is
constructed based on the tag definition at index
zero of the VLAN Tag Table.

When clear, the JT1001 controller does not
automatically insert a VLAN header into a
transmitted packet.

The effect of the VLISGB bit can be overridden on
a per packet basis by setting the VLIS bit in the
transmit header. Refer to the transmit header
definitions for PIO, PDL, and PDC modes for
more detail.

29 RW √ USPIMD0 0 User Pin0Mode. This bit determines whether
User Pin0 is an input or output. When this bit is
set, User Pin0 is an input. When operating as an
input, the JT1001 controller updates the
USPIST0 bit in the Chip Status Register to reflect
the state of this pin.

When this bit is clear, the JT1001 controller
drives the state of the pin based on the value in
the USPIST0 bit in the Chip Status Register.

30 RW √ USPIMD1 0 User Pin1Mode. This bit determines whether
User Pin1 is an input or output. When this bit is
set, User Pin1 is an input. When operating as an
input, the JT1001 controller updates the
USPIST1 bit in the Chip Status Register to reflect
the state of this pin.

When this bit is clear, the JT1001 controller
drives the state of the pin based on the value in
the USPIST1 bit in the Chip Status Register.

31 RW √ LNCKEN 1 Length Check Enable. This bit governs the
JT1001 controller’s ability to detect length errors
in received packets. A length error is defined as a
packet containing a length/type field with a value
less than 1536 and one of the following two
conditions:

• The value is greater than the number of bytes
in the data field (the bytes after length/type
and before the FCS).

• The value is less than the number of bytes in
the data field and the packet size is not the
minimum length or greater than the maximum
length (i.e., a large packet).

When LNCKEN is set, the JT1001 controller’s
length checking logic is enabled.

When LNCKEN is clear, the JT1001 controller’s
length checking logic is disabled.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIES

5-7
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 01 MODE REGISTER – 2
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

P
A
C
K
E
R
E
N

R
X
U
P
C
K
E
N

R
X
T
P
C
K
E
N

R
X
I
P
C
K
E
N

T
X
U
P
C
K
E
N

T
X
T
P
C
K
E
N

T
X
I
P
C
K
E
N

S
E
R
E
C
L

L
P
B
K
M
D

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

4:0 N/A x RESRVD N/A Reserved.

7:5 RW x LPBKMD 000 Loopback Mode.

• 000 is no loopback.

• 010 is MAC loopback. This setting causes the
JT1001 controller’s MAC block to route
outbound packets to the MAC receiver logic
instead of to the PHY transmitter logic.

• 100 is PHY wireside loopback. This setting
causes the JT1001 controller’s PHY block to
route inbound packets to the PHY transmitter
logic instead of to the MAC receiver logic.

All other values are reserved.

8 W x SERECL 0 Set/Reset Control. Set/reset control bit for
bits[15:9].

9 RW √ TXIPCKEN 0 Transmit IP Header Checksum Enable. When set,
the JT1001 controller calculates and inserts the
IP header checksum into all packets containing
an IP header prior to the packet’s transmission.

When clear, the JT1001 controller does not
calculate or insert the IP header checksum prior
to the transmission of packets containing an IP
header.

The same effect can be accomplished on a
per-packet basis by clearing the TXIPCKEN bit
and setting the IPCKIS bit in the packet’s transmit
header. Refer to the transmit header definitions
for PIO, PDL, and PDC modes for more detail.

10 RW √ TXTPCKEN 0 Transmit TCP Checksum Enable. When set, the
JT1001 controller calculates and inserts the TCP
checksum into all packets containing a TCP
header prior to the packet’s transmission.

When clear, the JT1001 controller does not
calculate or insert the TCP checksum prior to the
transmission of packets containing a TCP header.

The same effect can be accomplished on a
per-packet basis by clearing the TXTPCKEN bit
and setting the TPCKIS bit in the packet’s
transmit header. Refer to the transmit header
definitions for PIO, PDL, and PDC modes for
more detail.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-8

Command and Status Registers
11 RW √ TXUPCKEN 0 Transmit UDP Checksum Enable. When set, the
JT1001 controller calculates and inserts the UDP
checksum into all packets containing an UDP
header prior to the packet’s transmission.

When clear, the JT1001 controller does not
calculate or insert the UDP checksum prior to the
transmission of packets containing an UDP
header.

The same effect can be accomplished on a
per-packet basis by clearing the TXUPCKEN bit
and setting the UPCKIS bit in the packet’s
transmit header. Refer to the transmit header
definitions for PIO, PDL, and PDC modes for
more detail.

12 RW √ RXIPCKEN 0 Receive IP Header Checksum Enable. When set,
the JT1001 controller computes the IP header
checksum of all received packets containing an
IP header and compares the checksum against
the IP header checksum in the received packet. If
the checksum passes, the packet is accepted
and IPCKSMER bit in the receive header is
cleared.

If the checksum fails, the action taken depends
on the state of the PACKEREN bit. If the
PACKEREN bit is set, IPCKSMER bit is set in the
receive header. Otherwise, the JT1001 controller
discards the packet.

13 RW √ RXTPCKEN 0 Receive TCP Checksum Enable. When set, the
JT1001 controller computes the TCP checksum
of all received packets containing a TCP header
and compares the checksum against the TCP
checksum in the received packet. If the checksum
passes, the packet is accepted and TPCKSMER
bit in the receive header is cleared.

If the checksum fails, the action taken depends
on the state of the PACKEREN bit. If the
PACKEREN bit is set, TPCKSMER bit is set in the
receive header. Otherwise, the JT1001 controller
discards the packet.

14 RW √ RXUPCKEN 0 Receive UDP Checksum Enable. When set, the
JT1001 controller computes the UDP checksum
of all received packets containing a UDP header
and compares the checksum against the UDP
checksum in the received packet. If the checksum
passes, the packet is accepted and UPCKSMER
bit in the receive header is cleared.

If the checksum fails, the action taken depends
on the state of the PACKEREN bit. If the
PACKEREN bit is set, UPCKSMER bit is set in
the receive header. Otherwise, the JT1001
controller discards the packet.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIES

5-9
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 02 TRANSMIT PDC BUFFER ADDRESS TABLE INDEX

In PDC mode, a table of pre-allocated buffer physical addresses is maintained
onboard the JT1001 controller. PDC transmit commands passed to the JT1001
controller reference preprogrammed addresses in the table with the buffer ID
(BID) field of the PDC command. The BID field is used to index into the table
and extract the address of the desired buffer. Thus, the JT1001 controller knows
where in HOST memory to look for the data to be transmitted.

As used above, pre-allocated buffers are locked (non-pageable), and occupy
contiguous CPU pages (allocated once per driver invocation) and their physical
addresses can be determined far in advance of actual use — usually at system
initialization time. For this process to work correctly, the physical addresses of
the pre-allocated buffers must be made known to the JT1001 controller prior to
first use (typically during initialization). HOST software initializes the table by
writing the index of the desired table entry into this register and the physical
address of a specific pre-allocated buffer into the Transmit PDC Buffer Address

15 RW √ PACKEREN 0 Pass Checksum Error Enable. This bit
determines how the JT1001 controller handles
packets containing IP, TCP, or UDP checksum
errors. If this bit is set, the JT1001 controller sets
the appropriate checksum error bits in the receive
header and passes the packet to HOST software.
If this bit is clear, the JT1001 controller discards
the packet and HOST software never sees the
packet.

The PAERPKEN bit in Mode Register – 1
overrides this bit. If PAERPKEN is set, packets
containing TCP/IP checksum errors are received
regardless of the setting of PACKEREN. If
PAERPKEN is clear, the setting of PACKEREN
governs the acceptance of packets TCP/IP
checksum errors.

31:16 N/A x RESRVD N/A Reserved.

Bit
Field Type E2 Mnemonic

Default
Value Description

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

T
B
I
X

Bit
Field Type E2 Mnemonic

Default
Value Description

5:0 W x TBIX 0 Table Index. This value specifies which slot in the
PDC Transmit Base Address Table will be
modified by the next write to the Transmit PDC
Buffer Address Register. The PDC Transmit Base
Address Table has 64 slots.

7 x x RESRVD x Reserved.

31:8 x x RESRVD x Reserved.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-10

Command and Status Registers
MSD Register and the Transmit PDC Buffer Address LSD Register. The stated
order is required for addresses larger than 32-bits on PCI implementations that
do not support 64-bit I/O — essentially, all current PCI implementations. If PCI
versions subsequent to 2.1 implement 64-bit I/O, the Transmit PDC Buffer
Address LSD/MSD Register can be accessed as a single register and the
sequence restriction does not apply. A method for reducing the number of I/O
cycles required to pass addresses larger than 32-bits using a single PCI
transaction in systems supporting only 32-bit I/O is described below. By
repeating this process for each slot in the table, the whole table can be initialized
with the physical addresses of pre-allocated buffers. The JT1001 controller
automatically increments TBIX after each write to the Transmit PDC Buffer
Address LSD Register. If HOST software is initializing the table slots
sequentially, it need only write the initial TBIX value.

For systems that do not require the additional 32-bits of address space, or for
those systems where the upper 32-bits are the same for all the transmit buffers,
the MSD register can be written once with the appropriate value. Once the MSD
register is initialized, all subsequent writes can be directed at the LSD register.
Each time the LSD register is written, the JT1001 controller will transfer the
preprogrammed value in the MSD register along with the new value programmed
into the LSD register into the buffer address table.

CSR 03 PRODUCT IDENTIFICATION REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
V
I
D

D
V
I
D

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R √ DVID 1 Device Identifier. A value that uniquely identifies
the JT1001 controller from all other Jato
Technologies products. When read, this field
returns the same value that is returned when
reading the Device ID register in the JT1001
controller’s PCI configuration space.

23:16 R x RVID 0 Revision Identifier. A value that uniquely identifies
a particular revision level of the JT1001 controller.
Revision numbers are assigned beginning at 0.

When read, this field returns the same value that
is returned when reading the Revision ID
Register in the JT1001 controller’s PCI
configuration space.

31:24 x x RESRVD 0 Reserved.
JATO TECHNOLOGIES

5-11
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 04 TRANSMIT PDC BUFFER ADDRESS LSD

CSR 05 TRANSMIT PDC BUFFER ADDRESS MSD

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
F
A
D
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x BFADLO 0 Buffer Address Low DWORD. Values written to
this register are placed by the JT1001 controller
into the LSD (bits 31:0) of the Transmit PDC
Buffer Address Table. Once HOST software
writes to this register, the JT1001 controller will
transfer the contents of this register and the
contents of the register to the Transmit PDC
Buffer Address Table. The HOST identifies which
entry in the buffer address table is to be modified
by writing the entry’s index value in the Transmit
PDC Buffer Address Table Index Register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
F
A
D
H
I

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x BFADHI 0 Buffer Address High DWORD. Values written to
this register are placed by the JT1001 controller
into the MSD (bits 63:32) of the Transmit PDC
Buffer Address Table. The HOST identifies which
entry in the buffer address table is to be modified
by writing the entry’s index value in the Transmit
PDC Buffer Address Table Index Register.

The buffer address table proper is not affected by
any data stored in this register until the LSD (bits
31:0) of the address are written into the Transmit
PDC Buffer Address LSD Register.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-12

Command and Status Registers
CSR 06 RECEIVE PDC BUFFER ADDRESS TABLE INDEX

In PDC mode, a table of pre-allocated buffer physical addresses is maintained
onboard the JT1001 controller. PDC receive commands passed to the JT1001
controller reference pre-programmed addresses in the table with the BID field of
the PDC command. Thus, the JT1001 controller knows where in HOST memory
to look for the data to be transferred.

As used above, pre-allocated buffers are locked (non-pageable), and occupy
contiguous CPU pages (allocated once per driver invocation) and their physical
addresses can be determined far in advance of actual use — usually at system
initialization time. For this process to work correctly, the physical addresses of the
pre-allocated buffers must be made known to the JT1001 controller prior to first
use (typically during initialization). HOST software initializes the table by writing
the index of the desired table entry into this register and the physical address of
a specific pre-allocated buffer into the Receive PDC Buffer Address MSD Register
and the Receive PDC Buffer Address LSD Register. The stated order is required
for addresses larger than 32 bits on PCI implementations that do not support
64-bit I/O — essentially, all current PCI implementations. If PCI versions
subsequent to 2.1 implement 64-bit I/O, the Receive PDC Buffer Address
LSD/MSD Register can be accessed as a single register and the sequence
restriction does not apply. A method for reducing the number of I/O cycles required
to pass addresses larger than 32-bits using a single PCI transaction in systems
supporting only 32-bit I/O is described below. By repeating this process for each
slot in the table, the whole table can be initialized with the physical addresses of
pre-allocated buffers. The JT1001 controller automatically increments TBIX after
each write to the Receive PDC Buffer Address LSD Register. If HOST software
is initializing the table slots sequentially, it need only write the initial TBIX value.

For systems that do not require the additional 32 bits of address space, or for
those systems where the upper 32 bits are the same for all the transmit buffers,
the MSD register can be written once with the appropriate value. Once the MSD
register is initialized, all subsequent writes can be directed at the LSD register.
Each time the LSD register is written, the JT1001 controller will transfer the

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

T
B
I
X

Bit
Field Type E2 Mnemonic

Default
Value Description

5:0 W x TBIX 0 Table Index. This value specifies which slot in the
PDC Receive Base Address Table will be
modified by the next write to the PDC Receive
Base Address Table Data Register. The PDC
Receive Base Address Table has 64 slots.

7 x x RESRVD x Reserved.

31:8 x x RESRVD x Reserved.
JATO TECHNOLOGIES

5-13
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
preprogrammed value in the MSD register along with the new value programmed
into the LSD register into the buffer address table.

CSR 07 RESERVED

CSR08 RECEIVE PDC BUFFER ADDRESS LSD

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
F
A
D
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x BFADLO 0 Buffer Address Low DWORD. Values written to
this register are placed by the JT1001 controller
into the Receive PDC Buffer Address Table at the
slot indicated by the TBIX field in the Receive
PDC Buffer Address Table Register. The JT1001
controller examines the values in the Receive
PDC Buffer Address LSD/MSD Registers when
the Receive PDC Buffer Address LSD Register is
written.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-14

Command and Status Registers
CSR 09 RECEIVE PDC BUFFER ADDRESS MSD

CSR 10 EEPROM REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
F
A
D
H
I

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x BFADHIDW 0 Buffer Address High DWORD. Values written to
this register are placed by the JT1001 controller
into the Receive PDC Buffer Address Table at the
slot indicated by the TBIX field in the Receive
PDC Buffer Address Table Register. The JT1001
controller examines the values in the Receive
PDC Buffer Address LSD/MSD Registers when
the Receive PDC Buffer Address LSD Register is
written.

The buffer address table proper is not affected by
any data stored in this register until the LSD (bits
31:0) of the address is written into the Receive
PDC Buffer Address LSD Register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

F
L
W
T
E
N

F
L
P
N

E
X
R
M
T
M

R
E
S
R
V
D

E
E
A
D

R
E
S
R
V
D

E
E
S
L

E
E
M
U

E
E
C
K
S
M
E

R
E
S
R
V
D

E
E
W
T
C
M

E
E
R
D
C
M

E
E
P
M
P
N

Bit
Field Type E2 Mnemonic

Default
Value Description

0 R x EEPMPN 0 EEPROM Present. This bit is set if EEPROM is
present.

1 W x EERDCM 1 EEPROM Read Command. This bit selects the
EEPROM read command. This bit must be set in
conjunction with either the EEMU bit or EESL bit
for a read command to occur.

2 W x EEWTCM 0 EEPROM Write Command. This bit selects the
EEPROM write command. This bit must be set in
conjunction with the EESL bit for a write
command to occur.

3 x x RESRVD 0 Reserved.

4 A x EECKSMER 0 EEPROM Checksum Error. When set, this bit
indicates that a problem occurred when the
JT1001 attempted to read EEPROM. HOST
software can retry the operation if desired.
JATO TECHNOLOGIES

5-15
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
5 WA x EEMU 1 EEPROM Multiple Access. Instructs the JT1001
controller to begin processing a multiple access
read command. A multiple access read command
causes the JT1001 controller to reinitialize CSRs
with their associated EEPROM values. See
Figure 7-1 for a list of CSRs that have associated
EEPROM values.

The EEMU bit must be set in conjunction with the
EERDCM bit for the reads to occur.

The EEMU bit remains set for the duration of the
multiple access read command. Upon completion
of the command, the JT1001 controller will
automatically clear this bit. HOST software can
poll this bit to determine when the command has
completed.

Setting the EEMU bit in conjunction with the
EEWTCM bit will result in an error. More
specifically, no action will be taken by the JT1001
controller except to set the EECMER bit.

The default value for this register is 1. This
causes the JT1001 controller to read EEPROM
following a hard or soft reset. When the read of
EEPROM has completed, the JT1001 controller
clears EEMU.

6 WA x EESL 0 EEPROM Single Access. Instructs the JT1001
controller to begin processing a single access
command to EEPROM. A single access
command can be either a read or write.

Setting the EESL bit in conjunction with the
EERDCM bit causes a single access read from
EEPROM. The EEPROM offset read from
EEPROM is specified by EEAD. The JT1001
controller places the value read from EEPROM
into the EEPROM Data Register.

Setting the EESL bit in conjunction with the
EEWTCM bit causes a single access write to
EEPROM. The EEPROM offset written is
specified by EEAD. The EEPROM Data Register
contains the value to be written.

Whether reading or writing, the EESL bit remains
set for the duration of the command. Upon
completion of the command, the JT1001
controller automatically clears this bit. HOST
software can poll this bit to determine when the
command has completed.

7 x x RESRVD 0 Reserved.

12:8 W x EEAD 0 EEPROM Address. This field specifies the offset
of the EEPROM DWORD to be read or written.
Although EEPROM is organized in 16-bit
WORDs, the JT1001 controller presents
EEPROM to software as 32-bit DWORDs. For
example, to read the second DWORD in
EEPROM, software will set EEAD to 2. The
JT1001 controller will then retrieve the WORDs at
EEPROM offsets 4 and 5 and place the result in
the EEPROM Data Register.

15:13 x x RESRVD 0 Reserved.

19:16 RW √ EXRMTM 0 Expansion ROM Timings.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-16

Command and Status Registers
The EEPROM is manipulated at the following times:

1. During manufacturing, when the default configuration and the MAC
address are programmed for the first time.

2. Each time the system is restarted, the default configuration is reloaded
into volatile JT1001 controller registers.

3. Anytime HOST software explicitly requests that EEPROM be read or
written. This might happen if a utility program is used to change the
programmed significance of the LEDs.

EEPROM is used as a convenient nonvolatile store of JT1001 controller
parameters that are directly related to a particular JT1001 controller and ought
not easily change, or that are required during system boot. Apart from system
startup time, EEPROM will seldom be manipulated. EEPROM may also be used
by HOST software as a nonvolatile store for software configuration parameters.

When reloading CSRs from EEPROM, the JT1001 controller calculates a 32-bit
checksum and compares the checksum against the checksum value stored in
EEPROM. If HOST software writes a value in EEPROM, it must also recalculate
and write the new checksum value to EEPROM.

20 R √ FLPN 0 Flash Present. This bit is used to distinguish
between the presence of a flash device or ROM
device. When set, this bit indicates a flash device
is attached to the JT1001 controller. When clear,
a ROM device is attached.

21 RW √ FLWTEN 0 Flash Write Enable. When set, the JT1001
controller allows the flash expansion ROM to be
written to via PCI memory transactions. When
clear, the flash can not be written.

31:22 x x RESRVD 0 Reserved.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIES

5-17
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 11 CHIP STATUS REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
X
I
L

T
X
I
L

U
S
P
I
S
T
1

U
S
P
I
S
T
0

F
L
C
T
S
T

R
X
P
K
A
V

T
X
P
K
A
C

Bit
Field Type E2 Mnemonic

Default
Value Description

0 R x TXPKAC 1 Transmit Packet Acceptable. When set, indicates
that the TX FIFO has room for at least one
maximum size packet.

1 R x RXPKAV 0 Receive Packet Available. When set, indicates
that the RX FIFO holds at least one packet.

2 RA x FLCTST 0 Flow Control Status. The JT1001 controller sets
this bit when it has temporarily disabled the
transmitter due to the reception of a PAUSE
frame. The JT1001 controller clears this bit when
it has re-enabled the transmitter.

HOST software queries this bit to determine if the
transmitter has been disabled due to reception of
a PAUSE frame.

3 RW x USPIST0 x User Pin0 State. The meaning and purpose of
this bit varies depending on the state of the
USPMD0 bit in Mode Register – 1.

When USPMD0 is set, User Pin0 is an input pin.
In this case, HOST software can read USPIST0
to determine the state of User Pin0. If User Pin0
is high, the JT1001 controller sets USPIST0. If
User Pin0 is low, the JT1001 controller clears
USPIST0. HOST software must not write to
USPIST0 when User Pin0 is acting as an input
pin.

When USPMD0 is clear, User Pin0 is an output
pin. In this case, the JT1001 controller drives the
state of User Pin0 according to state of USPIST0.
If HOST software sets USPIST0 to 1, the JT1001
controller drives User Pin0 to the high state. If
HOST software clears USPIST0, the JT1001
controller drives User Pin0 to the low state.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-18

Command and Status Registers
CSR12 TRANSMIT PDL ADDRESS REGISTER LSD

4 RW x USPIST1 x User Pin1 State. The meaning and purpose of
this bit varies depending on the state of the
USPMD1 bit in Mode Register – 1.

When USPMD1 is set, User Pin1 is an input pin.
In this case, HOST software can read USPIST1
to determine the state of User Pin1. If User Pin1
is high, the JT1001 controller sets USPIST1. If
User Pin1 is low, the JT1001 controller clears
USPIST1. HOST software must not write to
USPIST1 when User Pin1 is acting as an input
pin.

When USPMD1 is clear, User Pin1 is an output
pin. In this case, the JT1001 controller drives the
state of User Pin1 according to state of USPIST1.
If HOST software sets USPIST1 to 1, the JT1001
controller drives User Pin1 to the high state. If
HOST software clears USPIST1, the JT1001
controller drives User Pin1 to the low state.

5 R x TXIL 1 Transmitter Idle. This bit indicates whether or not
the JT1001 controller’s transmitter is currently
transmitting a packet.

When set, the JT1001 controller is not currently
transmitting a packet.

When clear, the JT1001 controller is currently
transmitting a packet.

6 R x RXIL 1 Receiver Idle. This bit indicates whether or not
the JT1001 controller’s receiver is currently
receiving a packet.

When set, the JT1001 controller is not currently
receiving a packet.

When clear, the JT1001 controller is currently
receiving a packet.

31:7 x x RESRVD x Reserved.

Bit
Field Type E2 Mnemonic

Default
Value Description

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
K
D
S
A
D
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x PKDSADLO N/A Descriptor Address. Writing to this register loads
a PDL’s address into the JT1001 controller’s TX
command FIFO and increments the TX command
FIFO count. These actions are triggered when
the least significant DWORD is written.
JATO TECHNOLOGIES

5-19
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
Figure 5-1 describes the format of the PDL used in the master mode packet
transmission. The descriptor is used to describe a single packet. HOST software
guarantees the PDLs are QWORD aligned. The fragments pointed to by PDLs
can be on any byte boundary.

Figure 5-1. PDL Transmit Header Format

The fields of the packet descriptor have the following significance:

PKLE — Packet Length. The length of the packet contained in the fragments
described by this data structure is reflected in the packet length field. As the
BMC processes this data structure, it takes the value in the PKLE field and
passes it to the MAC to indicate the number of bytes to be transmitted. PKLE
must equal the sum of the FGLEx fields. If it does not, the packet is not
transmitted onto the wire. The maximum value for PKLE is 32 Kbytes — the size
of the TX FIFO packet header. HOST software must guarantee that this
maximum is not exceeded.

FGCN — Fragment Count. Indicates the number of fragments that are defined
by the PDL. The sum of the lengths of each fragment in the PDL corresponds
with the value stored in the PKLE field. This field allows the BMC to determine
the size of the PDL. A maximum size PDL can accommodate up to 31 fragments.
Each fragment descriptor is 16 bytes in length. Thus, the maximum length PDL
can be 16 * 31 + 8 = 504 bytes in length.

IPCKIS — IP Header Checksum Insert. This bit allows HOST software to request
the IP header checksum be inserted in the packet. Setting this bit causes the

3
1

3
0

2
9

2
8

2
7

2
4

2
3

2
2

2
1

2
0

1
6

1
5

0
0

D
M
D
N
I
N
R
Q

R
E
S
R
V
D

V
L
I
S

V
L
T
B
I
X

U
P
C
K
I
S

T
P
C
K
I
S

I
P
C
K
I
S

F
G
C
N

P
K
L
E

RESRVD

FGAD LSD 0

FGAD MSD 0

RESRVD FGL 0

RESRVD

FGAD LSD 1

FGAD MSD 1

RESRVD FGLE 1

RESRVD

•
•
•

FGAD LSD 30

FGAD MSD 30

RESRVD FGLE 30

RESRVD
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-20

Command and Status Registers
JT1001 controller to calculate and insert the IP header checksum into the packet
that contains an IP header. If the packet does not contain an IP header, the
JT1001 controller does not calculate or insert the checksum.

TPCKIS — TCP Checksum Insert. This bit allows HOST software to request
the TCP checksum be inserted into the packet. Setting this bit causes the JT1001
controller to calculate and insert the TCP checksum into a packet that contains
a TCP header. If the packet does not contain a TCP header, the JT1001 controller
does not calculate or insert the checksum.

UPCKIS — UDP Checksum Insert. This bit allows HOST software to request
the UDP checksum be inserted into the packet. Setting this bit causes the
JT1001 controller to calculate and insert the UDP checksum into the packet that
contains a UDP header. If the packet does not contain a UDP header, the JT1001
controller does not calculate or insert the checksum.

VLTBIX — VLAN TCI Table Index. This field is an index into the VLAN TCI Table.
The JT1001 controller uses the TCI information at this index to construct a VLAN
tag header.

VLIS — VLAN Insert Tag. Setting this bit causes the JT1001 controller to
construct and insert a VLAN tag header into the packet prior to its transmission.
The JT1001 controller constructs the VLAN tag header using the TCI at index
VLTBIX in the VLAN TCI Table.

DMDNINRQ — DMA Done Interrupt Request. Indicates to the BMC that an
interrupt is requested when the BMC is done transferring the final fragment
described by the PDL. Note that no explicit correlation exists between the
transferred data and the interrupt.

FGAD — Fragment Address. Fields used to pass the physical addresses of
fragments to the BMC. Each PDL can accommodate up to 31 fragment
addresses arranged in physically contiguous memory immediately following the
PDL’s command field.

FGLE — Fragment Length. Fields used to denote the length in bytes of the
packet data stored in the fragment. The sum of all the FGLE fields in a PDL
equals the value specified in the PKLE field.

RESRVD — Reserved. HOST software sets this field to 0.
JATO TECHNOLOGIES

5-21
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 13 TRANSMIT PDL ADDRESS REGISTER MSD

CSR 14 RECEIVE PDL ADDRESS REGISTER LSD

The Receive PDL Address Register accepts pointers to receive PDLs. These
PDLs have a reciprocal function to their transmit counterparts. However, the
format of the command block is nearly identical.

Figures 5-2 and 5-3 denote the positions and names of the bits in the receive
PDL header. Note that for receive PDLs, there are two distinct packet formats.
The first is used when the PDL is transferred to the JT1001 controller. This
pre-receive header format is used to inform the JT1001 controller of the location
of receive buffers and the per PDL processing options that the HOST software

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
K
D
S
A
D
H
I

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x PKDSADHI N/A Packet Descriptor Address High. Writing to this
register loads the address of a PDL into the
JT1001 controller’s Transmit Command FIFO and
increments the Transmit Command FIFO Count.
These actions are triggered when the least
significant. DWORD is written.

Writing to this register does not initiate a Transmit
PDL command. Transmit PDL commands are
only initiated when the LSD of the PDL Address
is written into the Transmit PDL Address LSD
Register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
K
D
S
A
D
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x PKDSADLO N/A Packet Descriptor Address Low. Writing to this
register loads the address of a PDL into the
JT1001 controller’s Receive Command FIFO and
increments the Receive Command FIFO Count.
These actions are triggered when the least
significant DWORD is written.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-22

Command and Status Registers
wishes to enable. When the JT1001 controller transfers a packet into HOST
memory, the post-receive PDL header format is used to convey the packet length
and reception status to the HOST. HOST software guarantees the PDLs are
QWORD aligned. The fragments pointed to by PDLs can be on any byte
boundary.

Figure 5-2. PDL Pre-Receive Header Format

Pre-receive PDL header fields are initialized by HOST software prior to handing
the PDL to the JT1001 controller. The fields of the pre-receive packet descriptor
have the following definition:

PKLE — Packet Length. The maximum number of received data bytes the
packet descriptor can accommodate. This value is the sum of the individual
fragment lengths. If PKLE is greater than the sum of the fragments and the
received packet size is greater than the sum of the fragment lengths, the received
packet is truncated and no error is indicated. If PKLE is less than the sum of
the fragments and the packet size is greater than PKLE, the EROV in the
post-receive PDL is set to indicate an overflow error. The maximum value for
PKLE is 64 Kbytes — the size of the RX FIFO packet header.

FGCN — Fragment Count. The number of fragments attached to the PDL. The
maximum number of fragments is 31. Each fragment descriptor is 16 bytes in
length. Thus, the maximum length PDL can be 16 * 31 + 8 = 504 bytes in length.

RXINRQ — Receive Interrupt Request. When set, this bit forces a receive
interrupt to be generated when the JT1001 controller finishes transferring the
packet to HOST memory, even if the RXMS bit in the Interrupt Mask Register

3
1

3
0

2
1

2
0

1
6

1
5

0
0

R
X
I
N
R
Q

R
E
S
R
V
D

F
G
C
N

P
K
L
E

RESRVD

FGAD LSD 0

FGAD MSD 0

RESRVD FGLE 0

RESRVD

FGAD LSD 1

FGAD MSD 1

RESRVD FGLE 1

RESRVD

•
•
•

FGAD LSD 30

FGAD MSD 30

RESRVD FGLE 30

RESRVD
JATO TECHNOLOGIES

5-23
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
is reset. The interrupt is a one-time interrupt associated with the PDL that has
the RXINRQ bit set. This bit is useful in reducing the overall number of interrupts
passed to the HOST for receive packet processing.

FGAD — Fragment Address. Fields used to pass the physical addresses of
fragments to the BMC. Each PDL can accommodate up to 31 fragment
addresses arranged in physically contiguous memory immediately following the
PDL’s command field.

FGLE — Fragment Length. Fields used to specify the maximum number of bytes
each fragment can accommodate. The sum of all the FGLE fields in a PDL
equals the value specified in the PKLE field.

RESRVD — Reserved. HOST software sets this field to 0.

Figure 5-3. PDL Post-Receive Header Format

Once the JT1001 controller has deposited a received packet into the memory
described by a PDL, the JT1001 controller updates the PDL header to contain
the packet length and receive status. The post-receive PDL header fields are
defined as follows:

PKLE — Packet Length. Indicates the packet’s length in bytes. Note that this
value reflects the actual length of the packet as determined by the JT1001

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
6

1
5

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
5

0
4

0
3

0
0

R
X
E
R

E
R
A
L

E
R
R
U

E
R
C
R

E
R
O
V

L
G
P
K

M
C
A
D

B
C
A
D

P
H
A
D

E
R
L
N

R
E
S
R
V
D

F
G
C
N

P
K
L
E

R
E
S
R
V
D

U
P
H
D
P
N

T
P
H
D
P
N

I
P
H
D
P
N

U
P
C
K
E
R

T
P
C
K
E
R

I
P
C
K
E
R

R
E
S
R
V
D

V
L
H
T

V
L
T
B
I
X

FGAD LSD 0

FGAD MSD 0

RESRVD FGLE 0

RESRVD

FGAD LSD 1

FGAD MSD 1

RESRVD FGLE 1

RESRVD

•
•
•

FGAD LSD 30

FGAD MSD 30

RESRVD FGLE 30

RESRVD
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-24

Command and Status Registers
controller. In cases where the packet overflows the receive buffer, this field still
reflects the length of the packet and not the amount of data deposited into the
buffer.

FGCN — Fragment Count. The number of fragments attached to the PDL. The
value of this field remains unchanged from the pre-receive PDL header.

PHAD — Physical Address. The PHAD bit indicates that the received packet’s
destination address matches the JT1001 controller’s station (MAC) address.

BCAD — Broadcast Address. This bit indicates that the received packet’s
destination address was the broadcast address.

MCAD — Multicast Address. When the JT1001 controller multicast address
filtering mechanism determines that a packet with a multicast destination
address should be passed to the HOST, it sets this bit in the PDL header and
transfers the packet to HOST memory.

LGPK — Large Packet. By setting this bit, the JT1001 controller indicates that
the inbound packet was determined to be larger than the maximum allowable
length for an ethernet frame. If the LGPKEN enable bit is clear, the JT1001
controller regards this condition as an error. If the LGPKEN enable bit is set,
the JT1001 controller does not regard this condition as an error.

EROV — Overflow Error. It is possible for incoming data to exceed the space
allotted to receive it. In such cases, the JT1001 controller will deliver as much
data as will fit into the available buffer space. Any data that does not fit will be
discarded. When this situation occurs, the JT1001 controller sets the EROV bit.

ERCR — CRC Error. When the JT1001 controller detects that an inbound
packet’s CRC does not match the computed value, it sets this bit to signal the
condition.

ERRU — Runt Error. If the JT1001 controller determines that an inbound packet
is shorter than the minimum ethernet packet length, it sets the ERRU bit.

ERAL — Alignment Error. This bit is set when the JT1001 controller receives a
packet that is not an integral number of octets in length.

ERLN — Length Error. This bit is set when the JT1001 controller detects that
an inbound packet’s LLC data is shorter than the length specified in the
length/type field of the packet’s MAC header.

RXER — Receive Error. Whenever an error condition is detected for a received
packet corresponding to a particular PDL, the error bit in that PDL is set to 1.
This error bit is the “OR” of the ERLN, EROV, ERCR, ERRU, and ERAL bits.
This bit is also set if the LGPKEN bit in Mode Register – 1 is clear, the
PAERPKEN bit in Mode Register – 1 is set, and the LGPK bit is set.

VLTBIX — VLAN Table Index. This field indicates the index of the VLAN TCI
Table entry that matched the TCI in the received packet’s VLAN tag header. This
field only has meaning if the VLHT bit is set.
JATO TECHNOLOGIES

5-25
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
VLHT — VLAN Hit. When set, this bit indicates the received packet contained
a VLAN tag header whose TCI matched an entry in the VLAN TCI Table. This
bit is set by the JT1001 controller if the VLEN and VLTBEN bits in Mode Register
– 1 are set and the VLAN tag information in the packet matches an entry in the
VLAN TCI Table; otherwise this bit will not be set.

IPCKER — IP Header Checksum Error. When set, this bit indicates the packet
failed the IP header checksum test. The JT1001 controller tests the IP header
checksum in packets when the RXIPCKEN bit is set in Mode Register – 2 and
the packet contains an IP header. When clear, the packet either passed the IP
header checksum test, did not contain an IP header, or the JT1001 controller’s
checksum support is disabled.

TPCKER — TCP Checksum Error. When set, this bit indicates the packet failed
the TCP checksum test. The JT1001 controller tests the TCP checksum in
packets when the RXTPCKEN bit is set in Mode Register – 2 and the packet
contains a TCP header and data. When clear, the packet either passed the TCP
checksum test, did not contain a TCP header, or the JT1001 controller’s
checksum support is disabled.

UPCKER — UDP Checksum Error. When set, this bit indicates the packet failed
the UDP checksum test. The JT1001 controller tests the UDP checksum in
packets when the RXUPCKEN bit is set in Mode Register – 2 and the packet
contains a UDP header and data. When clear, the packet either passed the UDP
checksum test, did not contain an UDP header, or the JT1001 controller’s
checksum support is disabled.

IPHDPN — IP Header Present. When set, this bit indicates the JT1001 controller
found an IP header in the packet. When clear, the packet did not contain an IP
header. The value of this bit is valid irrespective of the setting of the RXIPCKEN
bit in Mode Register – 2.

TPHDPN — TCP Header Present. When set, this bit indicates the JT1001
controller found a TCP header in the packet. When clear, the packet did not
contain a TCP header. The value of this bit is valid irrespective of the setting of
the RXTPCKEN bit in Mode Register – 2.

UPHDPN — UDP Header Present. When set, this bit indicates the JT1001
controller found an UDP header in the packet. When clear, the packet did not
contain an UDP header. The value of this bit is valid irrespective of the setting
of the RXUPCKEN bit in Mode Register – 2.

FGAD — Fragment Address. Fields used to pass the physical addresses of
fragments to the BMC. The values of the FGAD fields remain unchanged from
the pre-receive PDL header.

FGLE — Fragment Length. Fields used to specify the maximum number of bytes
each fragment can accommodate. The values of the FGLE fields remain
unchanged from the pre-receive PDL header.

RESRVD — Reserved. The JT1001 controller sets this field to 0.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-26

Command and Status Registers
CSR 15 RECEIVE PDL ADDRESS REGISTER MSD

CSR16 TRANSMIT PDC REGISTER

Writing to this register initiates a packet Propulsion transfer for packet
transmission.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
K
D
S
A
D
H
I

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x PKDSADHI N/A Packet Descriptor Address High. Writing to this
register loads bits 63:32 of a 64-bit PDL address
into the JT1001 controller’s RX Command FIFO
Staging Register. When the LSD of the address is
written (bits 31:0), the complete address is
moved to the receive command FIFO and the RX
Command FIFO Count Register is incremented.

Writing to this register does not initiate a receive
PDL command. Receive PDL commands are
only initiated when the LSD of the PDL address is
written into the Receive PDL Address LSD
Register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

X
F
D
N
I
N
R
Q

R
E
S
R
V
D

B
F
I
D

B
F
L
E

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 W x BFLE 0 Buffer Length. Number of bytes to be transferred
by the JT1001 controller.

21:16 W x BFID 0 Buffer ID. Uniquely identifies which pre-allocated
HOST buffer to use for transmission.

23:22 x x RESRVD 0 Reserved.

24 W x XFDNINRQ 0 Transfer Done Interrupt Request. When set, this
bit indicates that the HOST software wishes an
interrupt to be generated upon completion of data
transfer from HOST memory to JT1001 controller
memory.

31:25 x x RESRVD 0 Reserved.
JATO TECHNOLOGIES

5-27
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
A transmit PDC buffer is used for PDC mode packet transmission. HOST
software fills the transmit PDC buffer with one or more transmit requests and
then enqueues the PDC buffer to the JT1001 controller via the Transmit PDC
Register. HOST software guarantees the transmit PDC buffers are QWORD
aligned. The maximum size of a transmit PDC buffer is 32 Kbytes. HOST
software must guarantee that the maximum size is not exceeded.

Each transmission request within a transmit PDC buffer is identified by a transmit
packet header. The initial DWORD in each transmit PDC buffer is a transmit
packet header. The transmit data immediately follows the transmit packet
header. The JT1001 controller can determine the type of a header by examining
the HDTYPE field. The JT1001 controller can use the LEN field to determine
the offset of the next header in the buffer. All headers within a transmit PDC
buffer are aligned on a QWORD boundary. Currently, the only header type
defined for transmit PDC buffers is the transmit packet header.

Each transmission request within a transmit PDC buffer consists of a transmit
packet header followed by the data bytes that constitute the packet to be
transmitted. The JT1001 controller can use the LEN field to determine the offset
of the next header in the buffer. All transmit packet headers within a transmit
PDC buffer begin on a QWORD boundary. A detailed description of the PDC
transmit header and data format follows (see Figure 5-4).

Figure 5-4. PDC Transmit Header and Data Format

The definition of the PDC transmit header and data fields follow.

LEN — Length. Indicates the number of bytes to be transmitted. LEN bytes of
transmit data follow the transmit packet header.

HDTYPE — Header Type. A unique value used to identify the header type. For
a transmit request header, the value is 0x2.

IPCKIS — IP Header Checksum Insert. This bit allows HOST software to request
the IP header checksum be inserted into the packet. Setting this bit causes the
JT1001 controller to calculate and insert the IP header checksum into the packet
that contains an IP header. If the packet does not contain an IP header, the
JT1001 controller does not calculate or insert the checksum.

3
1

3
0

2
9

2
8

2
7

2
4

2
3

2
2

2
1

2
0

1
6

1
5

0
0

R
E
S
R
V
D

V
L
I
S

V
L
T
B
I
X

U
P
C
K
I
S

T
P
C
K
I
S

I
P
C
K
I
S

H
D
T
Y
P
E

L
E
N

TXDATA 3 TXDATA 2 TXDATA 1 TXDATA 0

•
•
•

TXDATA(LEN-1) TXDATA(LEN-1)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-28

Command and Status Registers
TPCKIS — TCP Checksum Insert. This bit allows HOST software to request
the TCP checksum be inserted in the packet. Setting this bit causes the JT1001
controller to calculate and insert the TCP checksum into a packet that contains
a TCP header. If the packet does not contain a TCP header, the JT1001 controller
does not calculate or insert the checksum.

UPCKIS — UDP Checksum Insert. This bit allows HOST software to request
the UDP checksum be inserted into the packet. Setting this bit causes the
JT1001 controller to calculate and insert the UDP checksum into the packet that
contains a UDP header. If the packet does not contain a UDP header, the JT1001
controller does not calculate or insert the checksum.

VLTBIX — VLAN TCI Table Index. This field is an index into the VLAN TCI Table.
The JT1001 controller uses the TCI information at this index to construct a VLAN
tag header

VLIS — VLAN Insert Tag Header. Setting this bit causes the JT1001 controller
to construct and insert a VLAN tag header into the packet prior to its
transmission. The JT1001 controller constructs the VLAN tag header using the
TCI at index VLTBIX in the VLAN TCI Table.

TXDATA — Transmit Data. Data bytes that constitute the packet to be
transmitted. TXDATA is padded by HOST software to the next DWORD
boundary.

CSR 17 RECEIVE PDC REGISTER

Writing to this register allows a packet Propulsion transfer for reception to occur
at a future time.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
X
I
N
R
Q

R
E
S
R
V
D

B
F
I
D

B
F
L
E

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 W x BFLE 0 Buffer Length. The maximum number of bytes
that can be transferred into the buffer specified at
BFID.

21:16 W x BFID 0 Buffer ID. Uniquely identifies which pre-allocated
HOST buffer to use for reception.

30:22 W x RESRVD 0 Reserved.

31 W x RXINRQ 0 Receive Interrupt Request. This bit
communicates to the JT1001 controller that the
HOST wishes to be interrupted when a packet is
received into the buffer corresponding to this
PDC command. The interrupt will be generated
regardless of the state of the RXMS bit in the
Interrupt Mask Register.
JATO TECHNOLOGIES

5-29
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
A receive PDC buffer is used for PDC mode packet reception. The Receive PDC
Register is used to enqueue a receive PDC buffer to the JT1001 controller. The
JT1001 controller fills the receive PDC buffer with data representing one or more
received packets. When enqueuing the PDC buffer, the format of the PDC buffer
is undefined. As the JT1001 controller receives packets, it places the information
into the PDC buffer in the following format. HOST software guarantees receive
PDC buffers are aligned on a QWORD boundary. The maximum size of a receive
PDC buffer is 64 Kbytes. HOST software must guarantee that the maximum
size is not exceeded.

Receive PDC buffers begin with either a receive packet header or null header.
Following each header, 0 – n bytes of data is written to the PDC buffer. HOST
software can determine the type of header by examining the HDTYPE field. If
a header has data following it, HOST software can use the HDTYPE or LEN
field to determine the offset of the next header in the buffer. Headers within a
receive PDC buffer are aligned on a QWORD boundary. The last header in a
receive PDC buffer is always the null header. A detailed description of each
header type follows.

A receive packet header describes a received packet. For each received packet
in a PDC buffer, the JT1001 controller will write a receive packet header followed
by the data bytes that constitute the received packet. A single receive PDC buffer
may contain multiple receive PDC headers. Figure 5-5 describes the format of
the receive packet header and data.

Figure 5-5. PDC Receive Header and Data Format

The definition of the PDC receive header and data fields follow.

LEN — Length. Indicates the number of bytes in the received packet. LEN bytes
of received data follow the receive packet header.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
6

1
5

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
5

0
4

0
3

0
0

R
X
E
R

E
R
A
L

E
R
R
U

E
R
C
R

E
R
O
V

L
G
P
K

M
C
A
D

B
C
A
D

P
H
A
D

E
R
L
N

R
E
S
R
V
D

H
D
T
Y
P
E

0x01

L
E
N

R
E
S
R
V
D

U
P
H
D
P
N

T
P
H
D
P
N

I
P
H
D
P
N

U
P
C
K
E
R

T
P
C
K
E
R

I
P
C
K
E
R

R
E
S
R
V
D

V
L
H
T

V
L
T
B
I
X

RXDATA 3 RXDATA 2 RXDATA 1 RXDATA 0

•
•
•

RXDATA(LEN-1) RXDATA(LEN-2)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-30

Command and Status Registers
HDTYPE — Header Type. A unique value used to identify the header type. For
a receive packet header, the value is 0x1.

PHAD — Physical Address. The PHAD bit indicates that the received packet’s
destination address matches the JT1001 controller’s station (MAC) address.

BCAD — Broadcast Address. This bit indicates that the received packet’s
destination address was the broadcast address.

MCAD — Multicast Address. When the JT1001 controller multicast address
filtering mechanism determines that a packet with a multicast destination
address should be passed to the HOST, it sets this bit in the PDL header and
transfers the packet to HOST memory.

LGPK — Large Packet. By setting this bit, the JT1001 controller indicates that
the inbound packet was determined to be larger than the maximum allowable
length for an ethernet frame. If the LGPKEN enable bit is clear, the JT1001
controller regards this condition as an error. If the LGPKEN enable bit is set,
the JT1001 controller does not regard this condition as an error.

EROV — Overflow Error. For PDCs, buffer overflow can only occur when the
first packet to be deposited in the PDC buffer is larger than the buffer proper. In
this case, the JT1001 controller will deliver as much data as will fit into the
available buffer space and set the EROV bit. Any data that does not fit into the
buffer will be discarded. When processing a PDC that already contains one or
more packets, a packet that does not fit into the remaining buffer space does
not cause an overflow error. Instead, the PDC completes (i.e., it is given to the
HOST), and the packet in question is delivered into the next available PDC buffer.

ERCR — CRC Error. When the JT1001 controller detects that an inbound
packet’s CRC does not match the computed value, it sets this bit to signal the
condition.

ERRU — Runt Error. If the JT1001 controller determines that an inbound packet
is shorter than the minimum ethernet packet length, it sets the ERRU bit.

ERAL — Alignment Error. This bit is set when the JT1001 controller receives a
packet that is not an integral number of octets in length.

ERLN — Length Error. This bit is set when the JT1001 controller detects that
an inbound packet’s LLC data is shorter than the length specified in the
length/type field of the packet’s MAC header.

RXER — Receive Error. Whenever an error condition is detected for a receive
packet, the error bit in that receive packet header is set to 1. This error bit is the
“OR” of the ERLN, EROV, ERCR, ERRU, and ERAL bits. This bit is also set if
the LGPKEN bit in Mode Register – 1 is clear, the PAERPKEN bit in Mode
Register – 1 is set, and the LGPK bit is set.

VLTBIX — VLAN Table Index. This field indicates the index of the VLAN TCI
Table entry that matched the TCI in the received packet’s VLAN tag header. This
field only has meaning if the VLHT bit is set.
JATO TECHNOLOGIES

5-31
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
VLHT — VLAN Hit. When set, this bit indicates the received packet contained
a VLAN tag header whose TCI matched an entry in the VLAN TCI Table. This
bit is set by the JT1001 controller if the VLEN and VLTBEN bits in Mode Register
– 1 are set and the VLAN tag information in the packet matches an entry in the
VLAN TCI Table; otherwise this bit will not be set.

IPCKER — IP Header Checksum Error. When set, this bit indicates the packet
failed the IP header checksum test. The JT1001 controller tests the IP header
checksum in packets when the RXIPCKEN bit is set in Mode Register – 2 and
the packet contains an IP header. When clear, the packet either passed the IP
header checksum test, did not contain an IP header, or the JT1001 controller’s
checksum support is disabled.

TPCKER — TCP Checksum Error. When set, this bit indicates the packet failed
the TCP checksum test. The JT1001 controller tests the TCP checksum in
packets when the RXTPCKEN bit is set in Mode Register – 2 and the packet
contains a TCP header and data. When clear, the packet either passed the TCP
checksum test, did not contain a TCP header, or the JT1001 controller’s
checksum support is disabled.

UPCKER — UDP Checksum Error. When set, this bit indicates the packet failed
the UDP checksum test. The JT1001 controller tests the UDP checksum in
packets when the RXUPCKEN bit is set in Mode Register – 2 and the packet
contains a UDP header and data. When clear, the packet either passed the UDP
checksum test, did not contain an UDP header, or the JT1001 controller’s
checksum support is disabled.

IPHDPN — IP Header Present. When set, this bit indicates the JT1001 controller
found an IP header in the packet. When clear, the packet did not contain an IP
header. The value of this bit is valid irrespective of the setting of the RXIPCKEN
bit in Mode Register – 2.

TPHDPN — TCP Header Present. When set, this bit indicates the JT1001
controller found a TCP header in the packet. When clear, the packet did not
contain a TCP header. The value of this bit is valid irrespective of the setting of
the RXTPCKEN bit in Mode Register – 2.

UPHDPN — UDP Header Present. When set, this bit indicates the JT1001
controller found a UDP header in the packet. When clear, the packet did not
contain a UDP header. The value of this bit is valid irrespective of the setting of
the RXUPCKEN bit in Mode Register – 2.

RXDATA — Receive Data. Data bytes that constitute the received packet.

A null header is used to indicate that no more headers exist in a PDC. Figure 5-6
describes the format of the null header.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-32

Command and Status Registers
Figure 5-6. PDC Null Header Format

The definition of the PDC null header field follows.

HDTYPE — Header Type. A unique value used to identify the header type. For
a null header, the value is 0x0.

When an overflow occurs in a PDC buffer, a null header is not deposited into
the PDC buffer, since the overflow condition implies that the first packet to be
delivered was too big to fit. In particular, this is true even if the null header itself
is the source of the overflow; e.g., as may occur when a PDC buffer is just large
enough to accommodate an inbound packet but not the null header appended
by the JT1001 controller.

CSR 18 INTERRUPT PERIOD REGISTER RESERVED

3
1

2
1

2
0

1
6

1
5

0
0

R
E
S
R
V
D

H
D
T
Y
P
E

0x00

R
E
S
R
V
D

See Figure 5-4. PDC Null Header Format.
See Figure 5-5. PDC Null Header Format.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
P
E

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x TMPE FFFFFF
FFh

NOTE: The definition of this register is
temporary and will be changed in a future
revision of the JT1001 controller.

Timer Period. The value in this register specifies
the number of clock ticks that elapse before the
JT1001 controller generates an interrupt if either
the DLINRQ or PEINRQ bits are set in the
Command Register and the Timer Expired
Interrupt Mask bit is set in the Interrupt Mask
Register. The clock operates at the speed of the
PCI bus (i.e., 33 MHz or 66 MHz).

When the DLINRQ bit is set in the Command
Register, a single interrupt is generated after the
time specified here elapses.

If the PEINRQ bit is set in the Command
Register, an interrupt is generated each time the
count elapses. The PEINRQ bit takes
precedence over the DLINRQ bit.
JATO TECHNOLOGIES

5-33
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 19 TX FIFO PACKET COUNT REGISTER

CSR 20 TX FIFO LOW WATERMARK REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

T
X
F
I
P
K
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R x TXFIPKCN 0 TX FIFO Packet Count. The number of packets in
the TX FIFO.

31:16 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

T
X
F
I
L
O
W
M

Bit Field Type E2 Mnemonic
Default
Value Description

15:0 RW x TXFILOWM 1000h TX FIFO Low Watermark. A write to this register
sets the low water mark. When the number of
DWORDs in the TX FIFO becomes equal to the
value written into this register, the JT1001
controller will signal a TXWMIN. The actual
generation of an interrupt request is governed by
the TXWMINMS.

31:16 x x RESRVD 0 Reserved.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-34

Command and Status Registers
CSR 21 TX FIFO DWORDS FREE REGISTER

CSR 22 TX FIFO WRITE REGISTER

When operating in PIO mode, HOST software accesses the TX FIFO directly
via this CSR. Data can be written to the CSR using BYTE, WORD, and DWORD
accesses.

The first DWORD written to the FIFO contains the number of bytes in the packet.
Subsequent writes to the FIFO contain the packet data itself. Once all packet
data has been written to the FIFO, HOST software initiates the transmission by
setting the SLMDTXCM bit in the Command Register. It is the HOST software’s
responsibility to enforce minimum and maximum packet sizes. The maximum
size packet that can be written into the TX FIFO is 32 Kbytes (including the TX
FIFO packet header). HOST software must not write to the TX FIFO when it is full.

Figure 5-7 describes the format and sequence of the writes to the TX FIFO.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

T
X
F
I
D
W
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R x TXFIDWCN 2000h Transmit DWORDs Free. The number of
DWORDS free in the TX FIFO.

31:16 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
X
F
I

W
T

T
X
F
I

W
T

T
X
F
I

W
T

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x TXFIWT N/A TX FIFO Write. A write to this register will store
the value in the TX FIFO. The write can be
performed as a BYTE, WORD, or DWORD
operation.
JATO TECHNOLOGIES

5-35
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
Figure 5-7. PIO Transmit Header and Data Format

The definitions for the PIO transmit header and data fields follow.

LEN — Length. Indicates the number of bytes to be transmitted. LEN bytes of
transmit data follow the transmit packet header.

IPCKIS — IP Header Checksum Insert. This bit allows HOST software to request
the IP header checksum be inserted into the packet. Setting this bit causes the
JT1001 controller to calculate and insert the IP header checksum into the packet
that contains an IP header. If the packet does not contain an IP header, the
JT1001 controller does not calculate or insert the checksum.

TPCKIS — TCP Checksum Insert. This bit allows HOST software to request
the TCP checksum be inserted into the packet. Setting this bit causes the JT1001
controller to calculate and insert the TCP checksum into a packet that contains
a TCP header. If the packet does not contain a TCP header, the JT1001 controller
does not calculate or insert the checksum.

UPCKIS — UDP Checksum Insert. This bit allows HOST software to request
the UDP checksum be inserted into the packet. Setting this bit causes the
JT1001 controller to calculate and insert the UDP checksum into the packet that
contains a UDP header. If the packet does not contain a UDP header, the JT1001
controller does not calculate or insert the checksum.

VLTBIX — VLAN TCI Table Index. This field is an index into the VLAN TCI Table.
The JT1001 controller uses the TCI information at this index to construct a VLAN
tag header.

VLIS — VLAN Insert Tag. Setting this bit causes the JT1001 controller to
construct and insert a VLAN tag header into the packet prior to its transmission.
The JT1001 controller constructs the VLAN tag header using the TCI at index
VLTBIX in the VLAN TCI Table.

TXDATA — Transmit Data. Data bytes that constitute the packet to be
transmitted.

3
1

2
9

2
8

2
7

2
4

2
3

2
2

2
1

2
0

1
6

1
5

0
0

R
E
S
R
V
D

V
LI
S

V
L
T
B
I
X

U
P
C
K
I
S

T
P
C
K
I
S

I
P
C
K
I
S

R
E
S
R
V
D

L
E
N

TXDATA 3 – 0

TXDATA 7 – 4

TXDATA 11 – 8

•
•
•

TXDATA(LEN-1)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-36

Command and Status Registers
CSR 23 RESERVED

CSR 24 RX FIFO READ REGISTER

When operating in PIO mode, HOST software accesses the RX FIFO directly
via the RX FIFO Read Register. Each read of this CSR retrieves one DWORD
of data from the RX FIFO.

The first DWORD read from the FIFO returns the reception status and packet
length. The second DWORD read from the FIFO returns VLAN tag information.
Subsequent reads to the FIFO return the packet data itself. The maximum size
packet that can be read from the RX FIFO is 64 Kbytes (including the RX FIFO
packet header). NOTE: Dropped packets will not appear in the FIFO as an
errored packet. If a packet is dropped, the JT1001 controller will simply
increment the Dropped Packet Count Register.

Figure 5-8 describes the format of a packet in the RX FIFO.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
X
F
I
R
D

R
X
F
I
R
D

R
X
F
I
R
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 R x RXFIRD N/A RX FIFO Read. A read from this register will
extract the next available value in the RX FIFO. A
read when the RX FIFO is empty is undefined
and yields invalid data. The read can be
performed as a BYTE, WORD, or DWORD
operation.
JATO TECHNOLOGIES

5-37
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
Figure 5-8. PIO Receive Header and Data Format

The definitions for the PIO receive header and data fields follow.

LEN — Length. Indicates the number of bytes actually deposited into FIFO for
the received packet.

PHAD — Physical Address. The PHAD bit indicates that the received packet’s
destination address matches the JT1001 controller’s station (MAC) address.

BCAD — Broadcast Address. This bit indicates that the received packet’s
destination address was the broadcast address.

MCAD — Multicast Address. The JT1001 controller sets this bit to indicate the
received packet met the following conditions: (1) the destination address is a
multicast address, and (2) the multicast address hashing algorithm generated
a bit that matches a bit set in the Multicast Hash Table Register.

LGPK — Large Packet. By setting this bit, the JT1001 controller indicates that
the inbound packet was determined to be larger than the maximum allowable
length for an ethernet frame. If the LGPKEN enable bit is clear, the JT1001
controller regards this condition as an error. If the LGPKEN enable bit is set,
the JT1001 controller does not regard this condition as an error.

ERCR — CRC Error. When the JT1001 controller detects that an inbound
packet’s CRC does not match the computed value, it sets this bit to signal the
condition.

ERRU — Runt Error. If the JT1001 controller determines that an inbound packet
is shorter than the minimum ethernet packet length, it sets the ERRU bit.

ERAL — Alignment Error. This bit is set when the JT1001 controller receives
a packet that is not an integral number of octets in length.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

1
6

1
5

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
5

0
4

0
3

0
0

R
X
E
R

E
R
A
L

E
R
R
U

E
R
C
R

R
E
S
R
V
D

L
G
P
K

M
C
A
D

B
C
A
D

P
H
A
D

E
R
L
N

R
E
S
R
V
D

L
E
N

R
E
S
R
V
D

U
P
H
D
P
N

T
P
H
D
P
N

I
P
H
D
P
N

U
P
C
K
E
R

T
P
C
K
E
R

I
P
C
K
E
R

R
E
S
R
V
D

V
L
H
T

V
L
T
B
I
X

RXDATA 3-0

RXDATA 7-4

RXDATA 11-9

•
•
•

RXDATA(LEN-1)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-38

Command and Status Registers
ERLN — Length Error. This bit is set when the JT1001 controller detects that
an inbound packet’s LLC data is shorter than the length specified in the
length/type field of the packet’s MAC header.

RXER — Receive Error. The JT1001 controller sets this bit when an error
condition is detected for a received packet. This error bit is the “OR” of the ERLN,
ERCR, ERRU, and ERAL bits. This bit is also set if the LGPKEN bit in Mode
Register – 1 is clear, the PAERPKEN bit in Mode Register – 1 is set, and the
LGPK bit is set.

VLTBIX — VLAN Table Index. This field indicates the index of the VLAN TCI
Table entry that matched the TCI in the received packet’s VLAN tag header. This
field has meaning only if the VLHT bit is set.

VLHT — VLAN Hit. When set, this bit indicates the received packet contained
a VLAN tag header whose TCI matched an entry in the VLAN TCI Table. This
bit is set by the JT1001 controller if the VLEN and VLTBEN bits in Mode
Register – 1 are set and the VLAN tag information in the packet matches an
entry in the VLAN TCI Table; otherwise this bit will not be set.

IPCKER — IP Header Checksum Error. When set, this bit indicates that the
packet failed the IP header checksum test. The JT1001 controller tests the IP
header checksum in packets when the RXIPCKEN bit is set in Mode Register – 2
and the packet contains an IP header. When clear, the packet either passed the
IP header checksum test, did not contain an IP header, or the JT1001 controller’s
checksum support is disabled.

TPCKER — TCP Checksum Error. When set, this bit indicates that the packet
failed the TCP checksum test. The JT1001 controller tests the TCP checksum
in packets when the RXTPCKEN bit is set in Mode Register – 2 and the packet
contains a TCP header and data. When clear, the packet either passed the TCP
checksum test, did not contain a TCP header, or the JT1001 controller’s
checksum support is disabled.

UPCKER — UDP Checksum Error. When set, this bit indicates that the packet
failed the UDP checksum test. The JT1001 controller tests the UDP checksum
in packets when the RXUPCKEN bit is set in Mode Register – 2 and the packet
contains a UDP header and data. When clear, the packet either passed the UDP
checksum test, did not contain an UDP header, or the JT1001 controller’s
checksum support is disabled.

IPHDPN — IP Header Present. When set, this bit indicates that the JT1001
controller found an IP header in the packet. When clear, the packet did not
contain an IP header. The value of this bit is valid irrespective of the setting of
the RXIPCKEN bit in Mode Register – 2.

TPHDPN — TCP Header Present. When set, this bit indicates that the JT1001
controller found a TCP header in the packet. When clear, the packet did not
contain a TCP header. The value of this bit is valid irrespective of the setting of
the RXTPCKEN bit in Mode Register – 2.
JATO TECHNOLOGIES

5-39
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
UPHDPN — UDP Header Present. When set, this bit indicates that the JT1001
controller found an UDP header in the packet. When clear, the packet did not
contain an UDP header. The value of this bit is valid irrespective of the setting
of the RXUPCKEN bit in Mode Register – 2.

RXDATA — Received Data. Data bytes that constitute the received packet. If
the RXDATA does not end on a QWORD boundary, HOST software will issue
a RX FIFO skip packet command to the JT1001 controller. Alternatively, HOST
software can also perform one more read of the RX FIFO and discard the data.

CSR 25 RESERVED

CSR 24 RX FIFO DWORD COUNT REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
X
F
I
D
W
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R x RXFIDWCN 0 RX FIFO DWORD Count. The number of
DWORDS currently consumed by received
packets in the RX FIFO.

31:16 x x RESRVD x Reserved.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-40

Command and Status Registers
CSR 27 RX FIFO HIGH WATERMARK REGISTER

CSR 28 RX FIFO PACKET COUNT REGISTER

CSR 29 COMMAND REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
X
F
I
H
I

W
M

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 RW x RXFIHIWM 2000h RX FIFO High Watermark. A write to this register
sets the high water mark for the RX FIFO. When
the number of DWORDs in the RX FIFO
becomes equal to the value written into this
register, the JT1001 controller will signal a
RXWMIN. The actual generation of an interrupt
request is governed by the RXWMINMS.

31:16 x x RESRVD x Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
X
F
I
P
K
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 R x RXFIPKCN 0 RX FIFO Packet Count. The number of packets in
the RX FIFO.

31:16 x x RESRVD x Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

T
M
E
N
1

T
M
E
N
0

P
E
I
N
R
Q

D
L
I
N
R
Q

R
X
F
I
S
K
P
K

S
L
M
D
T
X
C
M

S
E
R
E
C
L

JATO TECHNOLOGIES

5-41
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
Bit
Field Type E2 Mnemonic

Default
Value Description

0 W x SERECL N/A Set/Reset Control. Set/reset control bit for
bits[7:1].

1 WA x SLMDTXCM 0 Slave Mode Transmit Command. HOST software
sets this bit to initiate the transmission of a packet
it has placed in the TX FIFO. Prior to setting this
bit, HOST software must write all the packet’s
PIO transmit header and packet data to the FIFO
using the TX FIFO Write Register.

2 WA x RXFISKPK 0 RX FIFO Skip Packet. Setting this bit causes the
current packet in the RX FIFO to be discarded.
The JT1001 controller advances the RX FIFO’s
current packet pointer to the next available packet
and decrements the RXFIPKCN Register.

3 WA x DLINRQ 0 Delayed Interrupt Request. Setting this bit causes
the JT1001 controller to start a countdown timer.
Upon expiration of the timer, the JT1001
controller clears the DLINRQ bit and generates
an interrupt if the TMEXMS bit in the Interrupt
Mask Register is set. The initial value of the
countdown timer is determined by the value in the
Interrupt Period Register.

If HOST software sets the DLINRQ bit again
before the countdown timer expires, the JT1001
controller will reload the counter with the current
value of the Interrupt Period Register.

If HOST software resets the DLINRQ bit before
the countdown timer expires, the JT1001
controller will cancel the timer and no interrupt
occurs.

4 RW x PEINRQ 0 Periodic Interrupt Request. Setting this bit causes
the JT1001 controller to start a countdown timer.
The duration of the timer is the value specified in
the Interrupt Period Register. Upon expiration of
the timer, the JT1001 controller performs the
following actions:

• Checks the state of the TMEXMS bits in the
Interrupt Mask Register. If the TMEXMS bit is
set, the JT1001 controller generates an
interrupt.

• Checks the state of the PEINRQ bit. If it is still
set, the JT1001 controller reloads the timer
with the value in the Interrupt Mask Register
and restarts the timer.

The JT1001 controller continues in this cycle until
the HOST software resets the PEINRQ bit.

If the HOST software resets the PEINRQ bit
before the countdown timer expires, the JT1001
controller cancels the timer and no more periodic
timer interrupts occur.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-42

Command and Status Registers
CSR 30 INTERRUPT MASK REGISTER

This register governs the JT1001 controller’s ability to generate interrupts.

5 RW x TMEN0 0 Timer 0 Enable. Setting this bit starts Timer 0
ticking. The timer ticks at a rate of 25 MHz. Each
tick causes the value in the Timer 0 Count
Register to be incremented.

Clearing this bit causes the timer to stop ticking
and, therefore, the value in the Timer 0 Count
Register to stop incrementing.

6 RW x TMEN1 0 Timer 1 Enable. Setting this bit starts Timer 1
ticking. The timer ticks at a rate of 25 MHz. Each
tick causes the value in the Timer 1 Count
Register to be incremented.

Clearing this bit causes the timer to stop ticking
and, therefore, the value in the Timer 1 Count
Register to stop incrementing.

7 x x RESRVD 0 Reserved.

15:8 x x RESRVD 0 Reserved.

31:16 x x RESRVD 0 Reserved.

Bit
Field Type E2 Mnemonic

Default
Value Description

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

T
M
M
S
1

T
M
M
S
0

U
S
P
I
M
S
1

U
S
P
I
M
S
0

S
E
R
E
C
L

R
E
S
R
V
D

R
X
M
G
P
K
M
S

P
H
L
A
S
T
M
S

R
X
P
D
M
S

R
X
M
S

R
X
F
I
W
M
M
S

R
X
C
M
E
M
M
S

S
E
R
E
C
L

I
N
E
N
M
S

T
M
E
X
M
S

R
E
S
R
V
D

T
X
D
M
D
N
M
S

T
X
F
I
W
M
M
S

T
X
C
M
E
M
M
S

S
E
R
E
C
L

Bit
Field Type E2 Mnemonic

Default
Value Description

0 W x SERECL N/A Set/Reset Control. Set/reset control bit for
bits[7:1].

1 RW x TXCMEMMS 0 TX Command FIFO Empty Interrupt Mask.

2 RW x TXFIWMMS 0 TX FIFO Watermark Interrupt Mask.

3 RW x TXDMDNMS 0 Transmit DMA Done Interrupt Mask.

5:4 x x RESRVD 0 Reserved.

6 RW x TMEXMS 0 Timer Expired Interrupt Mask. When set, an
interrupt will occur when the single shot or
periodic timer has expired. This timer is started
when the setting of either the DLINRQ or
PEINRQ bits in the Command Register has
expired. The duration of the timer is the
determined by the value specified in the Interrupt
Period Register.
JATO TECHNOLOGIES

5-43
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
7 RW x INENMS 0 Interrupt Enable Mask. This bit is the master
interrupt enable bit that enables/disables the
JT1001 controller’s ability to generate an
interrupt. When set, the JT1001 controller will
generate an interrupt whenever an event bit (bits
23:0) in the Event Status Register is set and the
event bit’s corresponding mask bit is set in this
register. For example, if the INENMS bit is set (bit
6 is set in the Event Status Register and in the
Interrupt Mask Register), the JT1001 controller
generates an interrupt.

When the INENMS bit is clear, the JT1001
controller’s ability to generate an interrupt is
disabled.

NOTE: Clearing the INENMS bit does NOT
prevent the JT1001 controller from setting event
bits [23:0] in the Event Status Register. Clearing
the INENMS bit merely prevents the JT1001
controller from interrupting the HOST.

If any of the Event Status Register bits [23:0] are
set and the event bit’s corresponding mask bit is
set when HOST software sets INENMS bit, the
JT1001 controller will interrupt the HOST
immediately.

8 W x SERECL 0 Set/Reset Control. Set/reset control bit for bits
[15:9].

9 RW x RXCMEMMS 0 RX Command FIFO Empty Interrupt Mask.

10 RW x RXFIWMMS 0 RX FIFO Watermark Interrupt Mask.

11 RW x RXMS 0 Receive Interrupt Mask. This bit enables the
JT1001 controller to generate interrupts
whenever the JT1001 controller has placed a
complete packet into the RX FIFO.

12 RW x RXPDMS 0 Receive PDL/PDC Interrupt Mask. When set, this
bit enables per PDC/PDL interrupts as requested
in the flags field of the PDC/PDL descriptors or
commands. The interrupts are generated when
the JT1001 controller has completely transferred
the packet data to HOST buffers.

13 RW x PHLASTMS 0 Physical Layer Status Interrupt Mask. When set,
the JT1001 controller generates an interrupt
when a PHY status change occurs.

14 RW x RXMGPKMS 0 Receive Magic Packet Mask. When set, reception
of a Magic Packet data sequence will generate an
interrupt.

15 x x RESRVD 0 Reserved.

16 W x SERECL 0 Set/Reset Control. Set/reset control bit for bits
[23:17].

17 RW x USPIMS0 0 User Pin0 Interrupt Mask. This bit enables/
disables the generation of an interrupt based
upon the state of User Pin0. If this bit is set, and
the User Pin0 transitions from a low to high state,
the JT1001 controller generates an interrupt.

18 RW x USPIMS1 0 User Pin1 Interrupt Mask. This bit enables/
disables the generation of an interrupt based
upon the state of User Pin1. If this bit is set, and
the User Pin1 transitions from a low to high state,
the JT1001 controller generates an interrupt.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-44

Command and Status Registers
CSR 31 RESERVED

CSR 32 EVENT STATUS REGISTER
The Event Status Register indicates the events that have been detected by the
device. When an event is detected, the corresponding bit in this register is set.
If both the INENMS bit and the event’s corresponding mask bit are set in the
Interrupt Mask Register, then the occurrence of the event causes the device to
signal an interrupt. Following a read of any of the event status bits in this register,
the JT1001 controller automatically resets all the event status bits. Moreover,
the JT1001 controller automatically resets the INENMS bit in the Interrupt Mask
Register if an interrupt is pending (i.e., the JT1001 controller’s interrupt line is
active). This automatic clearing of the INENMS bit disables the JT1001
controller’s ability to generate further interrupts. To re-enable JT1001 controller
interrupts, the HOST software must set the INENMS bit in the Interrupt Mask
Register. When the HOST software sets the INENMS bit, the JT1001 controller
will immediately signal an interrupt for any pending events; i.e., events having
occurred after the last read of the Event Status Register.

19 RW x TMMS0 0 Timer 0 Interrupt Mask. This bit enables/disables
the generation of an interrupt when the value of
the Timer 0 Counter Register equals the value of
the Timer 0 Interrupt Trigger Register.

20 RW x TMMS1 0 Timer 1 Interrupt Mask. This bit enables/disables
the generation of an interrupt when the value of
the Timer 1 Counter Register equals the value of
the Timer 1 Interrupt Trigger Register.

31:21 x x RESRVD 0 Reserved.

Bit
Field Type E2 Mnemonic

Default
Value Description

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.
JATO TECHNOLOGIES

5-45
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
X
D
M
D
N
C
N

R
E
S
R
V
D

T
M
I
N
1

T
M
I
N
0

U
S
P
I
I
N
1

U
S
P
I
I
N
0

R
E
S
R
V
D

R
E
S
R
V
D

R
X
M
G
P
K
I
N

P
H
L
A
S
T
I
N

R
X
P
D
I
N

R
X
I
N

R
X
F
I
W
M
I
N

R
X
C
M
E
M
I
N

R
E
S
R
V
D

R
E
S
R
V
D

T
M
E
X
I
N

R
E
S
R
V
D

T
X
D
M
D
N
I
N

T
X
F
I
W
M
I
N

T
X
C
M
E
M
I
N

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

0 x x RESRVD N/A Reserved.

1 RC x TXCMEMIN 0 Transmit Command FIFO Empty Interrupt. This
interrupt signals that the transmit command FIFO
is empty. This bit is set when the transmit
command count rises above 0 and then returns
to 0.

2 RC x TXFIWMIN 0 TX FIFO Watermark Interrupt. This interrupt is
asserted when the number of DWORDS in the
TX FIFO becomes equal to the number of
DWORDS specified in the TXFIWM Register due
to a read by the MAC.

3 RC x TXDMDNIN 0 Transmit DMA Done Interrupt. When set, this bit
indicates that the JT1001 controller has
transferred a packet with the DMDINRQ flag set
in the PDL or PDC command field. If multiple
packets have been transferred, as can happen
with a PDC, the interrupt is signaled after the final
packet has been copied to the JT1001 controller.

5:4 RC x RESRVD 0 Reserved.

6 RC x TMEXIN 0 Timer Expired Interrupt.

7 RC x RESRVD 0 Reserved.

8 RC x RESRVD 0 Reserved.

9 RC x RXCMEMIN 0 Receive Command FIFO Empty Interrupt. This
interrupt signals that the receive command FIFO
is empty. The JT1001 controller asserts this
signal immediately after the last receive
PDC/PDL is extracted from the receive command
FIFO. This bit is set when the receive command
count rises above 0 and then returns to 0.

10 RC x RXFIWMIN 0 RX FIFO Watermark Interrupt. This interrupt is
asserted when the number of DWORDS in the
RX FIFO becomes equal to the number of
DWORDS specified in the RXFIWM Register due
to a write by the MAC.

11 RC x RXIN 0 Receive Interrupt. The JT1001 controller
generates receive interrupts whenever a
complete packet is available in the RX FIFO.

Note that RXIN interrupts override RXPDIN
interrupts. In other words, when the RXMS bit is
set, an RXIN interrupt is generated for each
packet that is received by the JT1001 controller
irrespective of how the RXINRQ bit is set in the
receive PDCs and PDLs.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-46

Command and Status Registers
12 RC x RXPDIN 0 Receive PDC/PDL Interrupt. When the Interrupt
Mask Register RXPDMS bit is set to 1, the
JT1001 controller generates receive interrupts for
each packet received into a PDC or PDL style
buffer that has the RXINRQ bit set. The RXPDIN
interrupt is asserted only after the JT1001
controller has transferred the complete packet (or
group of packets in PDC mode) to HOST
memory.

Note that if RXIN interrupts are also enabled
(InterruptMaskRegister.RXMS=1), then each
received packet generates an interrupt
(InterruptStatusRegister.RXIN=1) irrespective of
the state of the RXINRQ bit in receive PDCs or
PDLs.

13 x x PHLASTIN 0 Physical Layer Status Interrupt. When set, this bit
indicates the JT1001 controller has detected a
PHY status change. HOST software can obtain
the current PHY status via the G/MII PHY Access
Register.

14 RC x RXMGPKIN 0 Receive Magic Packet Interrupt. When set, this
bit indicates that a Magic Packet data sequence
was received.

15 RC x RESRVD 0 Reserved.

16 RC x RESRVD 0 Reserved.

17 RC x USPIIN0 0 User Pin0 Interrupt. An interrupt occurs when the
User Pin0 transitions from a low to high state.

18 RC x USPIIN1 0 User Pin1 Interrupt. An interrupt occurs when the
User Pin1 transitions from a low to high state.

19 RC x TMIN0 0 Timer 0 Interrupt. An interrupt occurs when the
value of the Timer 0 Count Register equals the
value of the Timer 0 Interrupt Trigger Register.

20 RC x TMIN1 0 Timer 1 Interrupt. An interrupt occurs when the
value of the Timer 1 Count Register equals the
value of the Timer 1 Interrupt Trigger Register.

23:21 RC x RESRVD 0 Reserved.

31:24 RC x RXDMDNCN 0 Receive DMA Done Count. The count of receive
PDL/PDCs that the JT1001 controller has
completed processing since the last read of this
field. The receive command queue can hold 31
commands. HOST software uses this field to
determine how many receive PDL/PDC buffers
have been filled with receive data by the JT1001
controller. The JT1001 controller resets the count
to zero after each read.

NOTE: This field can be accessed as a BYTE,
WORD, or DWORD. A BYTE read of this field has
no affect on the state of other fields in the CSR. A
BYTE read of this field does NOT disable the
JT1001 controller’s ability to generate interrupts.

NOTE: This field is aliased from the Command
Status Register. Whether the count is read via the
Command Status Register or the Event Status
Register, the JT1001 controller will reset the
count after the read.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIES

5-47
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 33 RESERVED

CSR 34 MULTICAST HASH TABLE REGISTER LSD
When enabling a multicast address, the driver computes the hash value and
makes the JT1001 controller aware of the new address by writing a new hash
value into MCHSTBLO or MCHSTBHI.

CSR 35 MULTICAST HASH TABLE REGISTER MSD
When enabling a multicast address, the driver computes the hash value and
makes the JT1001 controller aware of the new address by writing a new hash
value into MCHSTBLO or MCHSTBHI.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

M
C
H
S
T
B
L
O

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x MCHSTBLO 0 Multicast Hash Table Low. The Multicast Hash
Table is set by the driver to indicate to the JT1001
controller which multicast addresses are
acceptable to the HOST. The hashing algorithm is
an imperfect filter. Consequently, the HOST must
ultimately examine inbound packets with
multicast destination addresses to determine if
they are indeed intended for the recipient HOST.
The Multicast Address Table is 64 bits wide. Bits
31 through 0 of the table are maintained in this
register.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-48

Command and Status Registers
CSR 36 LED 0 CONFIGURATION REGISTER

3
1

0
0

M
C
H
S
T
B
H
I

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 W x MCHSTBHI 0 Multicast Hash Table High. Bits 63 through 31 of
the table are maintained in this register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

L
D
O
U

R
E
S
R
V
D

R
E
S
R
V
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
R
V
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
D
I
P
S
G
P
L

L
D
E
N

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

0 x x RESRVD 0 Reserved.

1 RW √ LDEN 1 LED Enable. Allows the LED to be turned off
without upsetting the programming of the LED
Configuration Register. This bit permits the LED
configuration to be taken directly from EEPROM
without driver intervention. The driver need only
enable the LED if it is disabled.

2 RW √ LDIPSGPL 1 LED Input Signal Polarity. Inverts the input signal
to the LED.

3 RW √ PUXP 1 Pulse Expander. Stretches the time that the LED
is on (or off) such that it can be easily perceived
visually.

4 RW √ 10MB 0 10 Megabit. Indicates that the JT1001 controller
is configured for 10 Mb operation. When this bit is
set and the 10MB bit in the LED Signal Latch
Register is set, the signal sent to the LED will
oscillate at 1 Hz.

5 RW √ 100MB 0 100 Megabit. Indicates that the JT1001 controller
is configured for 100 Mb operation. When this bit
is set and the 100MB bit in the LED Signal Latch
Register is set, the signal sent to the LED will
oscillate at 4 Hz.

6 RW √ 1000MB 0 1000 Megabit. Indicates that the JT1001
controller is configured for 1000 Mb operation.

7 x x RESRVD 0 Reserved.

8 RW √ FD 0 Full-Duplex. Indicates that full-duplex operation is
enabled.
JATO TECHNOLOGIES

5-49
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 37 LED 1 CONFIGURATION REGISTER

See LED 0 Configuration Register for a detailed description of the programming.

CSR 38 LED 2 CONFIGURATION REGISTER

See LED 0 Configuration Register for a detailed description of the programming.

CSR 39 LED 3 CONFIGURATION REGISTER

See LED 0 Configuration Register for a detailed description of the programming.

9 RW √ AN 0 Auto Negotiating. Indicates that auto negotiation
is in progress.

10 RW √ LKST 1 Link State. Indicates whether the link is functional
or nonfunctional.

11 RW √ ADMA 0 Address Match. Indicates that an address match
with the JT1001 controller’s physical address has
been detected.

12 RW √ TX 0 Transmit. Indicates that the JT1001 controller is
transmitting a frame.

13 RW √ RX 0 Receive. Indicates that the JT1001 controller is
receiving a frame.

14 RW √ JA 0 Jabber. Indicates that the JT1001 controller has
detected a jabbering station.

15 RW √ CO 0 Collision. This bit indicates that the JT1001
controller is transmitting and receiving data
simultaneously. In half-duplex mode, transmitting
and receiving data simultaneously is an error
condition known as a collision. In full-duplex
mode, transmitting and receiving data
simultaneously is not an error condition. This bit
should not be set when operating in full-duplex
mode.

16 RW √ CA 0 Carrier Sense. Indicates PHY has sensed a
CARRIER.

30:17 x x RESRVD 0 Reserved.

31 R x LDOU x LED Out. The signal sent to the LED is routed to
this bit as well.

Bit
Field Type E2 Mnemonic

Default
Value Description
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-50

Command and Status Registers
CSR 40 RESERVED

CSR 41 EEPROM DATA REGISTER

CSR 42 LAN PHYSICAL ADDRESS REGISTER LSD
The LAN physical address registers are programmed with the MAC address of
the JT1001 controller. The JT1001 controller will accept all frames that have a
destination MAC address (OUI) matching the one programmed into this CSR
when the unicast enable (UCEN) bit is set in Mode Register – 1 (CSR 0). When
UCEN is reset, the JT1001 controller will not accept any unicast frames unless
the promiscuous mode enable (POEN) bit is set, in which case all frames are
accepted.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 R x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

E
E
D
A

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x EEDA 0 EEPROM Data Register. This is the data register
used when performing single accesses to
EEPROM.

When reading from EEPROM, the JT1001
controller places value read from EEPROM in this
register. HOST software must not read this
register until after the JT1001 controller has
cleared the EESI bit.

When writing to EEPROM, this register contains
the value to be written. HOST software must set
the value in this register prior to setting the EESI
bit. HOST software must not change this value
until after the JT1001 controller has cleared the
EESI bit.
JATO TECHNOLOGIES

5-51
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
Jato Technologies’ OUI is: 00-E0-83. A sample MAC address based on this OUI
is:

00-E0-83-01-02-03

The notation above is frequently referred to as canonical format. In canonical
format, the leftmost hexadecimal value (00 in the example) is transmitted first.
The hexadecimal value immediately to its right (E0 in the example) is transmitted
next, and so on. Each hexadecimal value represents a byte where bit 0 has the
value 20, bit 1 has the value 21, etc., through bit 7. For purposes of this example,
the leftmost byte is referred to as byte 0 (PHAD0 in the CSR diagram above)
and the rightmost byte is referred to as byte 5.

When bytes 0 through 3 of the physical address are written to this register
(CSR 42), byte 0 is written to bits 0 through 7, byte 1 is written to bits 8 through
15, etc. The result is as follows:

The remaining 2 bytes of the MAC address are deposited into the LAN Physical
Address Register MSW (CSR 43) as follows:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
H
A
D
3

P
H
A
D
2

P
H
A
D
1

P
H
A
D
0

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW √ PHAD0-3 0083E0
00h

Physical Address 0 – 3. When programming the
JT1001 controller’S MAC address, bytes 0
through 3 of the 6-byte address are written to this
register. For purposes of this discussion, byte 0 is
the first byte of the OUI as transmitted on the
physical medium. The example below further
clarifies the point. The JT1001 controller uses the
DWORD programmed into this register along with
the WORD programmed into CSR 43 to select
unicast frames specifically directed at the JT1001
controller.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

01 83 E0 00

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved Reserved 03 02
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-52

Command and Status Registers
CSR 43 LAN PHYSICAL ADDRESS REGISTER MSW

CSR 44 G/MII PHY ACCESS REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

P
H
A
D
5

P
H
A
D
4

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 RW √ PHAD 4 – 5 0100h Physical Address 4 – 5. The JT1001 controller’s
OUI. The most significant WORD of the OUI is
programmed in this register.

31:16 RW x RESRVD x Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

G
M
D
A

G
M
S
T

R
E
S
R
V
D

G
M
P
H
A
D

G
M
C
M

R
E
S
R
V
D

G
M
R
R
I
X

Bit
Field Type E2 Mnemonic

Default
Value Description

4:0 RW x GMRRIX 0 G/MII Register Index. Index of the PHY register to
be targeted by the I/O operation.

6:5 x x RESRVD 0 Reserved.

7 RW x GMCM 0 G/MII Command. If GMCM = 0, a read of the
PHY register specified by GMRRIX is performed.
The result is stored in the GMDA.

If GMCM = 1, a write of the value in the GMDA is
written to the PHY register specified by GMRRIX.

12:8 RW x GMPHAD 0 G/MII Physical Address. Physical address of the
PHY device to which I/O is to be performed.

14:13 x x RESRVD 0 Reserved.

15 RA x GMST 0 G/MII Command Status. HOST software polls
this bit to determine when a command to the
PHY has completed. The JT1001 controller sets
this bit when a write to the G/MII PHY Access
Register occurs. The JT1001 controller will clear
this bit when it has completed the I/O operation
with the PHY.

31:16 RW x GMDA 0 G/MII Data. If GMCM = 0, GMDA contains the
value read from the PHY. The value will be valid
after the GMST bit indicates the read operation
has completed.

If GMCM = 1, GMDA contains the value to be
written to the PHY. GMDA must not be altered by
HOST software until the GMST bit indicates the
write operation has completed.
JATO TECHNOLOGIES

5-53
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
HOST software uses the G/MII PHY Access Register to access the PHY’s
status and control registers. Prior to forcing the PHY to renegotiate with its link
partner, it is the responsibility of HOST software to quiesce packet transmission
and reception by clearing the Transmit Enable and Receive Enable bits in Mode
Register – 1.

CSR 45 G/MII MODE REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
P
E
N

G
M
R
P
P

R
E
S
R
V
D

G
M
P
C
E
N

G
M
I
F
P
R

R
E
S
R
V
D

G
M
F
D

G
M
W
R
S
P

Bit
Field Type E2 Mnemonic

Default
Value Description

1:0 RW x GMWRSP 10 G/MII Wire Speed. HOST software writes these
bits to select between the following wire speeds:

GMWRSP[1] GMWRSP[0] Line Rate
1 1 Reserved
1 0 1000 Mbps
0 1 100 Mbps
0 0 10 Mbps

HOST software sets this field to match the wire
speed at which the PHY is currently operating.
HOST software determines the current PHY
setting using the G/MII PHY Access Register.

2 RW x GMFD 1 G/MII Full-Duplex Mode. HOST software writes
this bit to select between full-duplex mode and
half-duplex mode. If GMFD = 1, then full-duplex
mode is selected. If GMFD = 0, then half-duplex
mode is selected.

HOST software sets this field to match the wire
speed at which the PHY is currently operating.
HOST software determines the current PHY
setting using the G/MII PHY Access Register.

7:3 RW x RESRVD 0 Reserved.

8 RW x GMIFPR x G/MII Interface Protocol. This bit selects the
interface protocol to use (TBI or G/MII). If
GMIFPR is set to logic 1, then the TBI interface
protocol is used to connect to a SERDES PHY
device. If GMIFPR is cleared to logic 0, then the
G/MII interface protocol is used to connect to a
G/MII PHY device. Upon reset, this bit is set to
the value on the PCS_EN pin.

9 R x GMPCEN x G/MII PCS Enhance. This bit indicates whether
the external PHY device needs to be enhanced
by the internal PCS. If GMPCEN is read as logic
1, then the external PHY requires the internal
PCS. If GMPCEN is read as logic 0, then the
external PHY does not require the internal PCS.

28:10 RW x RESRVD 0 Reserved.

30:29 RW x GMRPP 0 G/MII RPAT Pattern.

31 RW x RPEN 0 G/MII RPAT Enable.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-54

Command and Status Registers
CSR 46 STATISTIC INDEX REGISTER

This register is used in conjunction with the Statistic Value Register to read
statistics maintained by the JT1001 controller. To read the values of a particular
statistic, HOST software selects the statistic by writing the statistic index to this
register. The act of selecting the index causes the JT1001 controller to take two
actions: first, the current value of the statistic is latched into the Statistic Value
Register, and second, the statistic is reset to 0. HOST software then reads the
latched value of the selected statistic from the Statistic Value Register.

The table below defines the statistics kept by the JT1001 controller.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

R
E
S
R
V
D

S
C
I
X

Bit
Field Type E2 Mnemonic

Default
Value Description

4:0 W x SCIX 0 Statistic Index. The index of the statistic whose
value is to be placed into the Statistic Value
Register. See Table 5-1 for a description of each
statistic kept by the JT1001 controller.

31:5 x x RESRVD 0 Reserved.

Table 5-1. Statistic Index Table

SCIX Statistic Name Description

0 aFramesTransmittedOK Count of frames transmitted successfully by the JT1001
controller. This is an accurate count, despite the fact that the
JT1001 controller performs lying sends. Frames that encounter
single or multiple collisions are included in this count. Frames
that encounter the maximum number of collisions are not
included. The count does not wrap.

1 aSingleCollisionFrames Count of frames that experienced single collision prior to
successful transmission. The count does not include frames
that encountered a late collision, multiple collisions, or the
maximum number of collisions. The count does not wrap.

2 aMultipleCollisionFrames Count of frames that experienced multiple collisions prior to
successful transmission. The count does not include frames
that encountered a late collision, a single collision, or the
maximum number of collisions. The count does not wrap.

3 aFramesReceivedOK Count of frames received without error and passed the JT1001
controller’s destination address filter. If the VLAN support is
enabled, the packet must also pass the VLAN filter. The count
does not wrap.

4 aFrameCheckSequenceErrors Count of frames received with FCS errors. This count does not
include frames that had alignment errors. The count does not
wrap.

5 aAlignmentErrors A count of frames received with alignment errors. An alignment
error occurs when the received frame is not an integral number
of octets in length and does not pass the FCS check. The count
does not wrap.
JATO TECHNOLOGIES

5-55
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
6 Dropped Packet Count The number of dropped packets. A packet is considered
dropped if it passed the JT1001 controller’s destination
address filter and VLAN filter, but could not be successfully
received due to an internal error or lack of resource in the
JT1001 controller. The count does not wrap.

7 Errored Receive Packet Count The number of packets that encountered an error during packet
reception. This register is the sum of all errors detected by the
JT1001 controller during packet reception. The count does not
wrap.

8 Errored Transmit Packet Count The number of packets that encountered an error during
transmission. This register is the sum of all errors detected by
the JT1001 controller during packet transmission. This count
does not include packets that encountered single or multiple
collisions. The count does not wrap.

9 Late Collision Count A count of frames that encountered a late collision during
transmission. A late collision is defined as a collision that
occurs after at least minimum frame size bytes of a frame has
been transmitted. The count does not wrap.

10 Runt Packet Count A count of frames received that were smaller than the minimum
frame size of 64 bytes (including CRC). The count does not
wrap.

11 aFrameTooLong A count of frames received that were larger than the maximum
packet size. The count does not wrap.

12 VLAN Accepted Packet Count A count of VLAN tagged frames received that were accepted
by the JT1001 controller. The count does not wrap.

13 VLAN Discarded Packet Count A count of VLAN tagged frames received that were discarded
by the JT1001 controller. The JT1001 controller discards VLAN
tagged frames if the VLEN and VLTBEN bits are set in Mode
Register – 1 and the VLAN tag in the frame does not match any
entries in the VLAN TCI Table. The count does not wrap.

14 TCP/IP IP Checksum Error
Count

A count of TCP/IP packets that contained an IP header and
failed the JT1001 controller’s IP checksum test. This count is
incremented regardless of the state of the PACKEREN bit in
Mode Register – 2. The count does not wrap.

15 TCP/IP UDP Checksum Error
Count

A count of TCP/IP packets that contained a UDP header and
failed the JT1001 controller’s UDP checksum test. This count is
incremented regardless of the state of the PACKEREN bit in
Mode Register – 2. The count does not wrap.

16 alnRangeLengthErrors A count of packets that failed the JT1001 controller’s packet
length test. The count does not wrap.

17 TCP/IP TCP Checksum Error
Count

A count of TCP/IP packets that contained a TCP header and
failed the JT1001 controller’s TCP checksum test. This count is
incremented regardless of the state of the PACKEREN bit in
Mode Register – 2. The count does not wrap.

18 TCP/IP Non Ipv4 Packet Count A count of all packets transmitted that the JT1001 controller
was requested to insert an IP, TCP, and/or UDP checksum, but
could not do so because the version number in the IP header
was not version 4. The count does not wrap.

19 aFramesAbortedDueToXSColls A count of packets that experienced 16 collisions and failed to
transmit. The count does not wrap.

20 Unicast Packets Received OK A count of packets containing a unicast destination address
that were received without error. The count does not wrap.

21 aMulticastFramesReceivedOK A count of packets containing a multicast destination address
that were received without error. The count does not wrap.

22 aBroadcastFramesReceivedOK A count of packets containing a broadcast destination address
that were received without error. The count does not wrap.

23 PAUSE Command Packets
Received

A count of valid PAUSE packets received. The MAC Control
Packets Received count is also incremented when this count
increments. The count does not wrap.

Table 5-1. Statistic Index Table (Continued)

SCIX Statistic Name Description
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-56

Command and Status Registers
CSR 47 STATISTIC VALUE REGISTER

24 PAUSE Command Packets
Transmitted

A count of PAUSE command packets the JT1001 controller
generated and transmitted. The count does not wrap.

25 MAC Control Packets Received A count of MAC control packets received by the JT1001
controller. This count is independent of the PAUSE Command
Packets Received count. The count does not wrap.

26 aFramesDeferredWithXmissions A count of packets for which the first transmission was delayed
because the network was busy. The count does not wrap.

27 aFramesWithExcessiveDeferral A count of packets that were deferred greater than 3036-byte
times before successful transmission. The count is
incremented at most once per packet. The count does not
wrap.

28 aCarrierSenseErrors A count of times that carrier sense was deasserted during the
transmission of a packet. The count is incremented at most
once per packet. The count does not wrap.

Table 5-1. Statistic Index Table (Continued)

SCIX Statistic Name Description

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

S
C
V
L

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 R x SCVL 0 Statistic Value. The value of the statistic selected
by the last write to the Statistic Index Register.
JATO TECHNOLOGIES

5-57
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 48 VLAN TAG CONTROL INFORMATION TABLE
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

V
L
T
B
C
M

R
E
S
R
V
D

V
L
T
B
I
X

V
L
U
S
P
R

R
E
S
R
V
D

V
L
I
D

Bit
Field Type E2 Mnemonic

Default
Value Description

11:0 W x VLID 0 VLAN Identifier. This field corresponds to the
VLAN Identifier field in the VLAN tag header.
When receiving a VLAN tagged packet, the
JT1001 controller uses this field to determine if
the packet will be accepted or rejected.

When the JT1001 controller is inserting a VLAN
tag header prior to packet transmission, this field
is used in the construction of the VLAN tag
header.

12 x x RESRVD 0 Reserved.

15:13 W x VLUSPR 0 VLAN User Priority. The field corresponds to the
user_priority field in the VLAN tag header. When
receiving a VLAN tagged packet, the JT1001
controller uses this field to determine if the packet
will be accepted or rejected.

When the JT1001 controller is inserting a VLAN
tag header prior to packet transmission, this field
is used in the construction of the VLAN tag
header.

19:16 W x VLTBIX 0 VLAN TCI Table Index. The index of the VLAN
TCI Table entry to be acted upon by the
command specified by VLTBCM. The TCI Table
has 16 entries. The entry at index 0 is the “global”
entry.

20 x x RESRVD 0 Reserved.

21 W x VLTBCM 0 VLAN TCI Table Command. This bit indicates the
operation to be performed on the VLAN TCI Tag
Table. When set, the VLID and VLUSPR
information is added to the table at the index
specified by VLTBIX.

When the VLTBCM bit is clear, the TCI
information at index VLTBIX in the VLAN TCI Tag
Table is deleted.

31:22 x x RESRVD 0 Reserved.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-58

Command and Status Registers
CSR 49 VLAN TAG PROTOCOL ID REGISTER

CSR 50 RESERVED

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

T
P
I
D

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 W x TPID 8888h VLAN Tag Protocol Identifier. This value is the tag
protocol identifier (TPID) of the VLAN tag header.
The JT1001 controller uses this value when
constructing a VLAN tag header to be inserted
into the packet to be transmitted.

When the VLEN bit is set in Mode Register – 1,
the JT1001 controller uses this value when
filtering received packets that contain a VLAN
tag.

31:16 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 R x RESRVD 0 Reserved.
JATO TECHNOLOGIES

5-59
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 51 COMMAND STATUS REGISTER
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

R
X
C
M
F
E
C
N

R
E
S
R
V
D

T
X
C
M
F
E
C
N

R
X
D
M
D
N
C
N

T
X
D
M
D
N
C
N

Bit
Field Type E2 Mnemonic

Default
Value Description

7:0 RC x TXDMDNCN 0 Transmit DMA Done Count. Indicates how many
TX PDL/PDCs the JT1001 controller has
completed processing since the last read of this
field. HOST software uses this count to
determine when TX PDL/PDC buffers are no
longer in use by the JT1001 controller. The
JT1001 controller resets the count after each
read of this field.

NOTE: This field can be accessed as a BYTE,
WORD, or DWORD. A BYTE read of this field has
no affect on other fields in the CSR. More
specifically, the RXDMDNCN count is not
changed by a BYTE access to this field.

15:8 RC x RXDMDNCN 0 Receive DMA Done Count. The count of RX
PDL/PDCs the JT1001 controller has completed
processing since the last read of this field. HOST
software uses this field to determine how many
RX PDL/PDC buffers have been filled with
receive data by the JT1001 controller. The
JT1001 controller resets the count to 0 after each
read.

NOTE: This field can be accessed as a BYTE,
WORD, or DWORD. A BYTE read of this field has
no affect on other fields in the CSR. More
specifically, the TXDMDNCN count is not
changed by a BYTE access to this field.

NOTE: This field is aliased into the Event Status
Register. Whether the count is read via the
Command Status Register or the Event Status
Register, the JT1001 controller will reset the
count after the read.

21:16 R x TXCMFECN 31 Transmit Command Free Count. This is the
number of transmit command queue entries free
in the chip. HOST software uses this field to
determine how many additional transmit
commands can be queued to the chip. The
JT1001 controller can queue a maximum of 31
transmit commands.

23:22 x x RESRVD 0 Reserved.

29:24 R x RXCMFECN 31 Receive Command Free Count. This is the
number of receive command queue entries free
in the chip. HOST software uses this field to
determine how many additional receive
commands can be queued to the chip. The
JT1001 controller can queue a maximum of 31
receive commands.

31:30 x x RESRVD 0 Reserved.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-60

Command and Status Registers
CSR 52 FLOW CONTROL WATERMARK REGISTER

CSR 53 RESERVED

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

F
L
C
T
H
I

W
M

F
L
C
T
L
O
W
M

Bit
Field Type E2 Mnemonic

Default
Value Description

15:0 RW x FLCTLOWM 500h Flow Control Low Watermark. This field defines
the flow control low watermark. The watermark is
expressed in terms of the number of DWORDs in
use in the RX FIFO.

When the RX FIFO reaches the high flow control
high watermark and then falls to the low
watermark, the JT1001 controller constructs and
transmits a PAUSE frame with the pause duration
set to 0. This PAUSE frame informs the link
partner that the congested condition has
subsided and it may begin transmitting
immediately.

31:16 RW x FLCTHIWM 3B00h Flow Control High Watermark. This field defines
the flow control high watermark. The watermark
is expressed in terms of the number of DWORDs
in use in the RX FIFO.

When the RX FIFO reaches the high watermark,
the JT1001 controller constructs and transmits a
PAUSE frame instructing the link partner to stop
transmitting for 0FFFFh*512 bit times. As long as
the RX FIFO stays above the low watermark, the
JT1001 controller sends additional PAUSE
frames at an interval slightly less 0FFFFh*512 bit
times. This has the effect of keeping the link
partner paused.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.
JATO TECHNOLOGIES

5-61
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 54 RESERVED

CSR 55 RESERVED

CSR 56 RESERVED

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-62

Command and Status Registers
CSR 57 RESERVED

CSR 58 TIMER 0 COUNT REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E
S
R
V
D

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 x x RESRVD 0 Reserved.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
C
N
0

Bit
Field Type E2 Mnemonic

Default
Value Description

31:031:
0

RW x TMCN0 0 NOTE: The definition of this register is temporary
and will be changed in a future revision of the
JT1001 controller.

Timer 0 Count. The timer tick count. This count
increments with each timer tick when the TMEN0
bit is set in the Command Register. The timer
operates at 25 MHz and therefore ticks once
every 40 ns. The count remains constant when
the TMEN0 bit is clear. The count does not wrap.

A write to this register causes the counter to be
reset to 0, regardless of the value actually written.
JATO TECHNOLOGIES

5-63
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 59 TIMER 0 INTERRUPT TRIGGER REGISTER

CSR 60 TIMER 1 COUNT REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
I
N
T
R
0

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x TMINTR0 FFFFFF
FFh

NOTE: The definition of this register is temporary
and will be changed in a future revision of the
JT1001 controller.

Timer 0 Interrupt Trigger. This register specifies
an interrupt threshold for Timer 0. If the Timer 0
Count Register equals the value in this register,
and the TMMS0 bit in the Interrupt Mask Register
is set, the JT1001 controller will generate an
interrupt.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
C
N
1

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x TMCN1 0 NOTE: The definition of this register is temporary
and will be changed in a future revision of the
JT1001 controller.

Timer 1 Count. The timer tick count. The count
increments with each timer tick when the TMEN1
bit is set in the Command Register. The timer
operates at 25 MHz and, therefore, ticks once
every 40 ns. The count remains constant when
the TMEN1 bit is clear. The count does not wrap.

A write to this register causes the counter to be
reset to 0, regardless of the value actually written.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-64

Command and Status Registers
CSR 61 TIMER 1 INTERRUPT TRIGGER REGISTER

CSR 62 DEBUG COMMAND REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

T
M
I
N
T
R
1

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x TMINTR1 FFFFFF
FFh

NOTE: The definition of this register is temporary
and will be changed in a future revision of the
JT1001 controller.

Timer 1 Interrupt Trigger. This register specifies
an interrupt threshold for Timer 1. If the Timer 1
Count Register equals the value in this register,
and the TMMS1 bit in the Interrupt Mask Register
is set, the JT1001 controller will generate an
interrupt.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

D
B
S
T

R
E
S
R
V
D

B
I
S
T

Bit
Field Type E2 Mnemonic

Default
Value Description

0 W x BIST 0 Built In Self Test. This command causes the
JT1001 controller to perform a built-in self test
(BIST). After issuing this command, HOST
software polls the DBST until it clears. When the
JT1001 controller completes the BIST, it places
the BIST completion code into the Debug Data
Register and clears DBST. HOST software can
then read the Debug Data Register to obtain the
completion code for BIST. A 0 completion code
indicates the BIST passed. A non-zero
completion code indicates BIST failed.

30:1 x x RESRVD 0 Reserved.

31 RA x DBST 0 Debug Status Bit. This bit is set by HOST
software when writing to the Debug Address
Register. When the requested action is complete,
the JT1001 controller clears the bit. HOST
software polls this bit to determine when the
command has completed.
JATO TECHNOLOGIES

5-65
JT1001 Software Reference Manual - Rev. 0

Command and Status Registers
CSR 63 DEBUG DATA REGISTER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

D
B
D
A

Bit
Field Type E2 Mnemonic

Default
Value Description

31:0 RW x DBDA 0 Debug Data Register. The value and
interpretation of this field is dependent on the
command issued in the Debug Command
Register. Depending on the command issued,
HOST software may need to write this register
before issuing the command, or read this register
after issuing the command.
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
5-66

Section 6
Register Placement

Register Description Location

CSR00 Mode Register – 1 SIB

CSR01 Mode Register – 2 SIB

CSR02 Transmit PDC Buffer Address Table Index SIB

CSR03 Product Identification Register

CSR04 Transmit PDC Buffer Address LSD SIB

CSR05 Transmit PDC Buffer Address MSD SIB

CSR06 Receive PDC Buffer Address Table Index SIB

CSR07 Reserved

CSR08 Receive PDC Buffer Address LSD SIB

CSR09 Receive PDC Buffer Address MSD SIB

CSR10 EEPROM SIB

CSR11 Chip Status Register SIB

CSR12 TX PDL Address Register LSD SIB

CSR13 TX PDL Address Register MSD SIB

CSR14 RX PDL Address Register LSD SIB

CSR15 RX PDL Address Register MSD SIB

CSR16 TX PDC Register SIB

CSR17 RX PDC Register SIB

CSR18 Interrupt Period Register SIB

CSR19 TX FIFO Packet Count Register DBS

CSR20 TX FIFO Low Watermark Register DBS

CSR21 TX FIFO DWORDs Free Register DBS

CSR22 TX FIFO Write Register DBS

CSR23 Reserved

CSR24 RX FIFO Read Register DBS

CSR25 Reserved

CSR26 RX FIFO DWORD Count Register DBS

CSR27 RX FIFO Watermark Register DBS

CSR28 RX FIFO Packet Count Register DBS

CSR29 Command Register DBS

CSR30 Interrupt Mask Register SIF

CSR31 Reserved

CSR32 Event Status Register SIF

CSR33 Reserved
JATO TECHNOLOGIES

6-1
JT1001 Software Reference Manual - Rev. 0

Register Placement
CSR34 Multicast Hash Table Register LSD Just outside of
the MAC

CSR35 Multicast Hash Table Register MSD Just outside of
the MAC

CSR36 LED 0 Configuration Register SIF

CSR 37 LED 1 Configuration Register SIF

CSR38 LED 2 Configuration Register SIF

CSR39 LED 3 Configuration Register SIF

CSR40 Reserved

CSR41 EEPROM Data Register SIF

CSR42 LAN Physical Address Register LSD Just outside of
the MAC

CSR43 LAN Physical Address Register MSW Just outside of
the MAC

CSR44 G/MII PHY Access Register PHY

CSR45 G/MII Mode Register PHY

CSR46 Statistic Index Register SIF

CSR47 Statistic Value Register SIF

CSR48 VLAN TCI Table Register SIF

CSR49 VLAN Tag Protocol ID Register SIF

CSR50 Reserved

CSR51 Command Status Register SIF

CSR52 Flow Control Watermark Register

CSR53 Reserved

CSR54 Reserved

CSR55 Reserved

CSR56 Reserved

CSR57 Reserved

CSR58 Timer 0 Count Register

CSR59 Timer 0 Interrupt Trigger Register

CSR60 Timer 1 Count Register

CSR61 Timer 1 Interrupt Trigger Register

CSR62 Debug Command Register

CSR63 Debug Data Register

Register Description Location
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
6-2

Section 7
EEPROM Map

Off
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0 REGISTER

00 Reserved Unused

01 SUBSYSTEM ID SUBSYTEM VENDOR ID PCI CFG

02 MAX LATENCY MIN GRANT RESERVED PCI CFG

03

L
N
C
K
E
N

U
S
PI
M
D
1

U
S
PI
M
D
0

V
L
IS
G
B

V
L
R
M
ID

V
LT
B
E
N

V
L
E
N

R
E
S
E
R
V
E
D

R
X
F
L
C
T
E
N

M
G
M
C
B
E
N

M
G
P
K
E
N

D
B
M
D
E
N

R
E
S
E
R
V
E
D

L
G
P
K
E
N

R
E
S
E
R
V
E
D

R
M
P
P
E
N

T
X
P
P
E
N

G
M
S
T
P
O
E
N

R
X
T
R
P
R

T
X
F
L
C
T
E
N

R
E
S
E
R
V
E
D

CSR 00

04

R
E
S
E
R
V
E
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
E
R
V
E
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
DI
P
S
G
P
L

L
D
E
N

R
E
S
E
R
V
E
D

CSR 36

05

R
E
S
E
R
V
E
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
E
R
V
E
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
DI
P
S
G
P
L

L
D
E
N

R
E
S
E
R
V
E
D

CSR 37

06

R
E
S
E
R
V
E
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
E
R
V
E
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
DI
P
S
G
P
L

L
D
E
N

R
E
S
E
R
V
E
D

CSR 38

07

R
E
S
E
R
V
E
D

C
A

C
O

J
A

R
X

T
X

A
D
M
A

L
K
S
T

A
N

F
D

R
E
S
E
R
V
E
D

1
0
0
0
M
B

1
0
0
M
B

1
0
M
B

P
U
X
P

L
DI
P
S
G
P
L

L
D
E
N

R
E
S
E
R
V
E
D

CSR 39

08 RESERVED PHAD5 PHAD4 CSR 43

09 PHAD3 PHAD2 PHAD1 PHAD0 CSR 42

Figure 7-1. EEPROM Map
JATO TECHNOLOGIES

7-1
JT1001 Software Reference Manual - Rev. 0

EEPROM Map
10

RESERVED F
L
W
T
E
N

F
L
P
N

E
X
R
M
T
M

RESERVED
CSR 10

11 RESERVED TPID CSR 49

12

R
E
S
E
R
V
E
D

P
A
C
K
E
R
E
N

R
X
U
P
C
K
E
N

R
X
T
P
C
K
E
N

R
XI
P
C
K
E
N

T
X
U
P
C
K
E
N

T
X
T
P
C
K
E
N

T
XI
P
C
K
E
N

R
E
S
E
R
V
E
D

CSR 01

•
•
•

RESERVED
UNUSED

31 CHECKSUM CHECKSUM

Off
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0 REGISTER

Figure 7-1. EEPROM Map (Continued)
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
7-2

Section 8
Glossary

Symbol Description

AB Arbitrate

AC Acceptable

AD Address

AL Alignment

AN Auto Negotiation

AV Available

BC Broadcast

BF Buffer

BK Back

BT Byte

BU Bus

CA Carrier

CD Code

CK Check

CL Control

CM Command

CN Count

CO Collision

CR Cyclic Redundancy Check (CRC)

CS Chip Select

CT Control

DA Data

DB Debug

DE Descriptor

DF Defined

DL Delayed

DM Direct Memory Access. Refers to transactions initiated by the
JT1001 controller on the HOST/JT1001 controller interconnect bus
portion directly attached to the JT1001 controller. For JT1001, DMA
refers to MASTER PCI cycles initiated by the JT1001.
JATO TECHNOLOGIES

8-1
JT1001 Software Reference Manual - Rev. 0

Glossary
DN Done

DR Dropped

DS Disable

DV Device

DW Double Words (4 bytes)

E2 Electrically Erasable (as in EEPROM)

EM Empty

EN Enable

ER Error

EX Exhausted/Expired

FA Failure

FD Full Duplex

FE Free

FI FIFO

FL Flow

FR Frame

GM GMII

GN General

HD Header

HI High

HS Hash

HT Hit

HW Hardware

ID Identifier

IL Idle

IN Interrupt

IP Input or Internet Protocol (IP)

IS Insert

IX Index

JA Jabber

LA Layer

LD LED

LG Long

LK Link

LN Line

LO Low

LP Loop

LT Late

Symbol Description
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
8-2

Glossary
MA Match

MB Megabit

MC Multicast

MD Mode

MG Magic

MI MII

MS Mask

MU Multiple

NV Invalidate

OD Order

OK Okay

OU Out

OV Over

PA Pause

PE Periodic

PD PDL or PDC

PH Physical

PI Pin

PK Packet

PL Polarity

PM PROM

PN Present

PO Promiscuous or Poll

PP Packet Pad

PR Priority

PS Pass

PT Pointer

PU Pulse

RD Read

RE Reset

RESRVD Reserved

RG Ring

RM ROM or Remove

RQ Request

RR Register

RT Retries

RU Runt

RV Revision

Symbol Description
JATO TECHNOLOGIES

8-3
JT1001 Software Reference Manual - Rev. 0

Glossary
RX Receive

SC Statistic

SE Set

SG Signal

SI Single

SK Skip

SL Slave

SM Sum

SP Speed

SR Stretcher

ST State/Status

SW Software

SY Symbol

TB Table

TM Timer

TP Transmission Control Protocol (TCP)

TR Trigger

TS Test

TX Transmit

UC Unicast

UP User Datagram Protocol (UDP)

US User

VL Value or VLAN

WM Watermark

WR Wire

WT Write

XP Expander

Symbol Description
JATO TECHNOLOGIESJT1001 Software Reference Manual - Rev. 0
8-4

JATO TECHNOLOGIES
Confidential Information

JT1001 Datasheet - Rev 1.1.4
6

JATO TECHNOLOGIES, INC.
505 E. HUNTLAND DRIVE, SUITE 550

AUSTIN, TX 78752

(512) 407-2100

http://www.jatotech.com

© 1998, Jato Technologies, Inc.

	JT1001 Software Reference Manual Control Registers...
	Table of Contents
	List of Figures
	List of Tables
	Section�1 Section�1 Overview
	Figure�1-1. JT1001 Block Diagram

	Section�2 Section�2 Types of Registers
	Section�3 Section�3 Theory of Operations
	3.1 Input/Output Methods
	3.1.1 Programmed Input/Output
	Figure�3-1. PIO Data Transfer Process

	3.1.2 Packet Descriptor List
	Figure�3-2. Transmit Packet Descriptor List
	Figure�3-3. PDL Data Transfer Process

	3.1.3 Packet Propulsion Method (Packet Descriptor ...
	Figure�3-4. PDC Data Transfer Process

	3.2 Initialization
	3.2.1 Reset
	3.2.2 Physical Layer Configuration and Status
	3.2.3 PDC Buffer Allocation
	3.2.4 PDL Buffer Allocation
	3.2.5 System Initialization Event Sequence
	3.2.6 Initialization Algorithm
	Table�3-1.� Initialization Pseudo-Code�(Continued)...

	3.3 Transmit Packet Processing
	3.3.1 Transmit Packet Padding
	3.3.2 VLAN Tag Header Insertion
	3.3.3 CRC Generation
	3.3.4 Transmit Completion Status
	3.3.5 Transmit Statistics
	3.3.6 Simultaneous Use of PDL, PDC, and PIO I/O Me...
	3.3.7 Programmed Input/Output Method of Transmissi...
	Table�3-2.� PIO Transmit Pseudo-Code�(Continued)

	3.3.8 Packet Descriptor List Method of Transmissio...
	Table�3-3.� PDL Transmit Pseudo-Code�(Continued)

	3.3.9 Packet Propulsion Mode Method of Transmissio...
	Table�3-4.� PDC Transmit Pseudo-Code�(Continued)

	3.4 Receive Packet Processing
	3.4.1 Packet Reception Filters
	3.4.2 Packet Receive Status
	3.4.3 Receive Statistics
	3.4.4 Large Packet Reception
	3.4.5 Simultaneous Use of PDL, PDC, and PIO I/O Me...

	3.5 Programmed Input/Output (PIO) Method of Recept...
	Table�3-5.� PIO Receive Pseudo-Code�(Continued)

	3.6 Packet Descriptor List Method of Reception
	Table�3-6.� PDL Receive Pseudo-Code�(Continued)
	3.6.1 Packet Propulsion Mode Method of Reception
	3.6.1.1 Packet Propulsion Mode Receive Algorithm
	Table�3-7.� PDC Receive Pseudo-Code�(Continued)

	3.7 Interrupt Processing
	3.7.1 Event Status Register
	3.7.2 Interrupt Mask Register

	3.8 Interrupt Handler
	Table�3-8.� Interrupt Handler Pseudo-Code�(Continu...

	3.9 VLAN Support
	Figure�3-5. VLAN Header Format

	3.10 TCP/IP Checksum Support
	3.10.1 EEPROM Support

	3.11 Expansion ROM Support
	3.11.1 Magic Packet Wake Up

	3.12 PCI Power Management
	3.13 Pre-Fetching

	Section�4 Section�4 PCI Configuration Registers
	Figure�4-1. PCI Configuration Space Register Map

	Section�5 Section�5 Command and Status Registers
	Figure�5-1. PDL Transmit Header Format
	Figure�5-2. PDL Pre-Receive Header Format
	Figure�5-3. PDL Post-Receive Header Format
	Figure�5-4. PDC Transmit Header and Data Format
	Figure�5-5. PDC Receive Header and Data Format
	Figure�5-6. PDC Null Header Format
	Figure�5-7. PIO Transmit Header and Data Format
	Figure�5-8. PIO Receive Header and Data Format
	Table�5-1.� Statistic Index Table�(Continued)

	Section�6 Section�6 Register Placement
	Section�7 Section�7 EEPROM Map
	Figure�7-1. EEPROM Map�(Continued)

	Section�8 Section�8 Glossary

